
Chapter 12

Inference in Hidden Markov Models

A hidden Markov model (HMM) is a graphical model of the form shown below. The top chain is a Markov
chain representing the state of some system. Typically the state cannot be observed directly. However, we can
observe some (probabilistic) function of the state. For example, the Markov chain can represent the health
status of a patient and the observations are symptoms such as temperature, blood pressure, etc. As another
example, the Markov chain can represent the part of speech of words in a text, and the observation is the
actual word.

x1 · · · xt�1 xt xt+1 · · · xTStates (hidden):

y1 · · · yt�1 yt yt+1 · · · yTObservations:

· · · · · ·

The probability distribution for this model factorizes as

p(xT
1 , yT

1 ; ✓) = p(x1)
TY

t=2

p(xt|xt�1)
TY

t=1

p(yt|xt).

Assuming the Markov chain and the observations are both on discrete spaces, we can complete the model by
specifying ✓ = (⇡, A, B), where:

• The probability distribution ⇡ for x1,
⇡i = p(x1 = i).

• The transition matrix A of the Markov chain,

Aij = p(xt+1 = j|xt = i).

• The emission matrix B describing the probabilities of the observations given the state,

Bij = p(yt = j|xt = i).

Below are three common inference problems associated with HMMs and the methods for solving them. We
will not derive the solutions but they can be found in [1].
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• Evaluation: p(xt|yT
1 ; ✓) ! forward-backward algorithm (sum-product).

• Decoding: arg maxxT

1
p(xT

1 |yT
1 ; ✓) ! Viterbi algorithm (max-product).

• Learning: arg max✓ p(yT
1 ; ✓) ! Baum-Welch algorithm (EM).

Below are HMM notes from a previous class. Unless I get a chance to go over these in class, they are not

part of the course material and are here for self-study. But note that the methods are sum-product, max-

product, and EM algorithms, which are part of the course and so reviewing the material below can be helpful

in understanding those.
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