
Chapter 7

Expectation-Maximization *

7.1 Overview

Expectation-maximization (EM) is a method for dealing with missing data. For example, for classification,
the complete data consists of the features x and labels y, as shown in the left panel of Figure 7.1. With
a probabilistic model for this data, we can find the parameters for each class through maximum likelihood,
where the log-likelihood function is

log p(x, y; ✓),

where x = (x1, . . . , xn) and y = (y1, . . . , yn) and ✓ represents the parameters of class-conditional distributions
for each of the classes.

But what if the class labels are not given as in the right panel of Figure 7.1? The problem becomes more
difficult, but doesn’t seem hopeless as we can still distinguish two clusters and assign points to these with
various degrees of confidence.

Figure 7.1: Data from two classes, with labels given as colors (left) and not given (right).

We thus formulate this problem as finding ✓ that maximizes

log p(x; ✓) = log
X

y

p(x, y; ✓)
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Figure 7.2: The log-likelihood of the observation and consecutive EM lower bounds and estimates. In each
iteration, the current value of ✓ is denoted by � and the new value by ⇤. Here, ✓(0) = 1, ✓(1) = 1.5, ✓(2) =
2.04, ✓(3) = 2.472. Continuing in the same manner, we would obtain estimates 2.740, 2.880, 2.946, 2.976, . . . ,
where 3 is the true maximum.

In this case, (x, y) is the complete data, for which computing the likelihood is easy, but a component of this
data, namely y, is missing. Now computing the likelihood is difficult because of the summation, which is
typically over a large number of possibilities. Expectation-maximization is a method for handling missing
data.

EM is an iterative method that given the current estimate for the parameter, finds a new estimate. The idea
behind EM is finding lower bounds on the log-likelihood of the observed data and maximizing these lower
bounds. This is illustrated in Figure 7.2 (see Example 75). Suppose our current estimate of ✓ is ✓0. In each
iteration, we find a lower bound B(✓, ✓0) on log p(x; ✓) that coincides with it at ✓ = ✓0, i.e.,

log p(x; ✓) � B(✓, ✓0), for all ✓,

log p(x; ✓) = B(✓, ✓0), for ✓ = ✓0.
(7.1)

Now let our new estimate be
✓00 = arg max

✓
B(✓, ✓0).

Note that we have not used log p(x; ✓) to find ✓00. It follows that

log p(x; ✓00) � log p(x; ✓0).

So our new estimate is at least as good as the old one, and under certain conditions, it is going to be
strictly better. We then use ✓00 in place of ✓0 and repeat. Note that if log p(x; ✓) is bounded, since the
sequence log p(x; ✓0) is non-decreasing, it will converge. Under appropriate conditions, this means that ✓0 also
converges to a stationary point of p(x; ✓). See [1] for details.

It remains to find a lower bound that satisfies (7.1). For the likelihood of the observation and for any y such
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that p(y|x; ✓) > 0,

`(✓) = ln p(x; ✓) = ln
p(x, y; ✓)

p(y|x; ✓)
.

Then, for any distribution q for the missing data y,

`(✓) =
X

y

q(y) ln
p(x, y; ✓)

p(y|x; ✓)

�
X

y

q(y) ln
p(x, y; ✓)

p(y|x; ✓)
�D(q(y)||p(y|x; ✓))

=
X

y

q(y) ln
p(x, y; ✓)

p(y|x; ✓)
�

X

y

q(y) ln
q(y)

p(y|x; ✓)

=
X

y

q(y) ln p(x, y; ✓)�
X

y

q(y) ln q(y),

where for two distribution p1 and p2, D(p1(z)kp2(z)) is the relative entropy (also called the Kullback–Leibler
divergence or KL divergence) between p1 and p2 defined as

X

z

p1(z) log
p1(z)

p2(z)
.

Relative entropy is a measure of dissimilarity between distributions and can be shown to be non-negative and
is equal to 0 if and only if p1 = p2.

Thus for any distribution q, we have a lower bound on `(✓). Suppose our current guess for ✓ is ✓(t). We would
like this lower bound to be equal to `(✓) at ✓ = ✓(t). For this to occur, we need

D(q(y)||p(y|x; ✓(t))) = 0 () q(y) = p(y|x; ✓(t)),

resulting in
`(✓) �

X

y

p(y|x; ✓(t)) ln p(x, y; ✓)�
X

y

p(y|x; ✓(t)) ln p(y|x; ✓(t)) = B(✓, ✓(t)).

Now instead of maximizing `, we can maximize B. We note however that the second term in B is not a
function of ✓. So we instead define the following expectation

Q(✓, ✓(t)) =
X

y

p(y|x; ✓(t)) ln p(x, y; ✓),

and find
✓(t+1) = arg max

✓
Q(✓, ✓(t)).

For simplicity of notation, I often use ✓0 to denote ✓(t) and ✓00 to denote ✓(t+1). Also, let E0 be expected value
assuming the value of ✓0. We can then describe the EM algorithm as

• The E-step:
Q(✓; ✓0) =

X

y

p(y|x; ✓0) ln p(x, y; ✓) = E0[ln p(x, y; ✓)|x]

• The M-step:
✓00 = arg max

✓
Q(✓; ✓0).
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Update ✓0  ✓00 and repeat.

Roughly speaking, EM can be viewed as alternatively finding an estimate for the missing data through
expectation by assuming a value for the parameters (the E-step) and finding a new estimate for the parameter
based on the estimate of the data.

7.2 Clustering with EM

For classification the complete data is {(xi, yi)}n
i=1. When the labels yi are missing, the problem becomes

clustering.

We assume Gaussian class-conditionals:

p(yi = 1) = ⇡, xi|yi = 1 ⇠ N (µ1, K1)

p(yi = 0) = 1� ⇡, xi|yi = 0 ⇠ N (µ0, K0)

Let ✓ = (⇡, µ0, µ1, K0, K1). Ideally, we would want to maximize the likelihood for the observed data {(xi)}n
i=1,

`(✓) = ln p(xn
1 |✓) = ln

X

yn

1

p(xn
1 , yn

1 |✓).

But this is difficult to do because of a lack of an analytical solution due to the summation. Instead, we can
use a computational method such as EM.

We will proceed as follows:

• Set-up: It is helpful to start with the log-likelihood of the complete data and simplify it before pro-
ceeding to the EM algorithm. We have

ln p(xn
1 , yn

1 ; ✓) =
nX

i=1

ln p(xi, yi; ✓),

and for each term in this sum,

ln p(xi, yi; ✓) = ln
⇣
(⇡p(xi|yi = 1; ✓))yi((1� ⇡)p(xi|yi = 0; ✓))1�yi

⌘

= yi ln(⇡p(xi|yi = 1; ✓)) + (1� yi) ln((1� ⇡)p(xi|yi = 0; ✓)).

• The E-step: Let ✓0 be the current estimate for ✓ and let E0 denote expected value operator with respect
to the distribution p(y|x; ✓0). We have

Q(✓; ✓0) = E0[ln p(xn
1 , yn

1 ; ✓)|xn
1 ]

= E0

"
nX

i=1

ln p(xi, yi; ✓)|xn
1

#

=
nX

i=1

E0[ln p(xi, yi; ✓)|xi]
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(a) Raw data
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(b) t = 1
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(c) t = 2
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(d) t = 10
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(e) t = 15
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(f) t = 20
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(g) t = 30
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(h) t = 40
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(i) t = 50

Figure 7.3: EM clustering of a mixture of two Gaussian datasets. In (a) the raw data is shown and in (b-i),
steps of the EM algorithm are shown. To compare with the underlying distributions and clusters, the points
from each of the Gaussian distributions are shown with triangles and circles. However, the EM algorithm
does not have access to this data. The contour plots represent the current estimate for the parameters of each
of the Gaussian distributions and the color of each data point represents the estimate of the EM algorithm
for the probability that the point belongs to the clusters (�0

i = p(yi = 1|xi; ✓0)). A video of the clustering can
be found here.
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And for each term in the sum,

E0[ln p(xi, yi; ✓)|xi] = E0[yi ln(⇡p(xi|yi = 1; ✓)) + (1� yi) ln((1� ⇡)p(xi|yi = 0; ✓))|xi]

= E0[yi|xi] ln(⇡p(xi|yi = 1; ✓)) + E0[1� yi|xi] ln((1� ⇡)p(xi|yi = 0; ✓))

= �0
i ln ⇡ + (1� �0

i) ln(1� ⇡) + �0
i ln p(xi|yi = 1; ✓) + (1� �0

i) ln p(xi|yi = 0; ✓),

where

�0
i = E0[yi|xi]

= p(yi = 1|xi; ✓
0)

=
p(xi, yi = 1; ✓0)

p(xi, yi = 1; ✓0) + p(xi, yi = 0; ✓0)

=
⇡0N (xi; µ0

1, K
0
1)

⇡0N (xi; µ0
1, K

0
1) + (1� ⇡0)N (xi; µ0

0, K
0
0)

.

Here, �0
i has a significant meaning. It represents the probability that a given point xi belongs to class

1 given the current estimate of the parameters. Instead of computing the likelihood based on a known
value for yi, in the E-step, we compute the likelihood by partially assigning xi to class 1 and to class 0.

• The M-step: To find ⇡00:

@Q

@⇡
=

nX

i=1

✓
�0

i

⇡
� 1� �0

i

1� ⇡

◆
= 0) ⇡00 =

Pn
i=1 �0

i

n
.

To find µ00
1 :

@Q

@µ1
=

@

@µ1

nX

i=1

�0
i ln p(xi|yi = 1; ✓)

=
@

@µ1

nX

i=1

�0
i

✓
�1

2
(xi � µ1)

T K�1
1 (xi � µ1)

◆

=
nX

i=1

�0
iK

�1
1 (xi � µ1) = 0) µ00

1 =

Pn
i=1 �0

ixiPn
i=1 �0

i

.

To find K 00
1 :

@Q

@K�1
1

=
@

@K�1
1

nX

i=1

�0
i

✓
1

2
ln
��K�1

1

��� 1

2
(xi � µ1)

T K�1
1 (xi � µ1)

◆

=
1

2
K1

nX

i=1

�0
i �

1

2

nX

i=1

�0
i(xi � µ1)(xi � µ1)

T = 0) K 00
1 =

Pn
i=1 �0

i(xi � µ1)(xi � µ1)
T

Pn
i=1 �0

i

.

Several steps of an EM clustering of a dataset are shown in Figure 7.3. In essence, the EM algorithm uses the
current estimates of posterior class probabilities of a point as labels and updates the distributions. Having
updated the distributions, it updates the posterior class probabilities and repeats.
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7.3 EM with general missing data **

So far, we have considered problems in which data can be divided into an observed component x and a hidden
component y, with the expectation given by

Q(✓; ✓0) =
X

y

p(y|x; ✓0) ln p(x, y; ✓)

But we can use EM to solve a more general class of problems, where this division may not be possible.
Specifically, we assume that the complete data is given by z and the observed data is given by x, where x is
a function of z. In this case, the expectation is given by

Q(✓; ✓0) =
X

z

p(z|x; ✓0) ln p(z; ✓)

Example 75 ([1]). Let

x = s + ✏,

s ⇠ N (0, ✓), ✓ � 0

✏ ⇠ N (0, �2) �2 > 0,

where s and ✏ are independent, � is known, and ✓ is unknown. Our goal is to estimate ✓. In this case, the
complete data is z = (s, ✏) and observed data is x = s + ✏.

We can solve this problem directly by noting that

x ⇠ N (0, ✓ + �2),

where we have used
Var(x) = Cov(s + ✏, s + ✏) = �2 + ✓.

The maximum likelihood estimate for the variance of x is then

✓̂ML =

(
x2 � �2 if x2 � �2,

0 if x2 < �2.

With EM:

• The E-step:

Q(✓; ✓0) = E0[ln p(z; ✓)|x]

= E0[ln p(s; ✓) + ln p(✏; ✓)|x]
.
= E0[ln p(s; ✓)|x]

.
= E0


� ln ✓

2
� s2

2✓
|x
�

= � ln ✓

2
�

E0⇥s2|x
⇤

2✓

• The M-step:

@Q

@✓
= � 1

2✓
+

E0⇥s2|x
⇤

2✓2
= 0) ✓00 = E0[s2|x].
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This is a very intuitive result.

With some manipulation (HW), this results in

✓00 =

✓
✓0

✓0 + �2

◆2

x2 +
✓0�2

✓0 + �2
.

The plot for the log-likelihood and the EM estimates, starting from ✓(0) = 1, is given in Figure 7.2, where
�2 = and x = 2 and thus ✓̂ML = 3.
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