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Chapter 0

Review of Probability

In this chapter, we will review some concepts from probability theory and linear algebra that will be useful
in the rest of the course. An excellent resource for review of probability is [1], which also has many examples.

0.1 What is probability?

Probability is a branch of mathematics that deals with sets, and functions that assign real values to these
sets, in a way that certain axioms are satisfied. Note that this may or may not correspond to our models of
the real world. In that sense, probability is similar to geometry, number theory, etc.

Definitions:

Assuming an experiment with different possible outcomes, we will use the following definitions.1

• ⌦: the sample space, the set of all possibilities (outcomes)

• E ✓ ⌦: events

• p : A function from subsets of ⌦ to R�0. p(E) is the probability of the event E.

Axioms:

• p(E) � 0 for all E ✓ ⌦.

• p(⌦) = 1

• p(E1 [ E2) = p(E1) + p(E2) if E1 \ E2 = ?.

Based on these axioms, many theorems and other results can be proven. For A, B ✓ ⌦:

• If A ✓ B, then p(A)  p(B).

• p(A [ B) = p(A) + p(B) � p(A \ B).
1
These definitions and the following axioms are simplified. We cannot always assign probability to all subsets of ⌦. Also, for

the third axiom, for any countable sequence of mutually exclusive events E1, E2, . . . , we require that p(
S1

i=1) =
P1

i=1 p(Ei).
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And then more definitions for basic concepts:

• Two events A and B are independent, denoted A ?? B, if p(A \ B) = p(A)p(B).

• If p(B) 6= 0, the conditional probability of A given B is defined as

p(A|B) =
p(A \ B)

p(B)
.

• Random variables, distributions, expected value, ...

What these theorems and definitions ‘mean’ depends on what we think probability means.

Interpretations of probability

How do we assign probability to events? What does it mean, for example, to say that p(E) = 1/3?

• Frequentist interpretation: Assuming that there is a “random” experiment that can be repeated many
times for which E is an event, the relative “frequency” of E occurring is 1/3.

– Probability of heads for a fair coin: p(H) = 1/2. As odds this is represented as 1:1 (happening :
not happening)

– Probability distribution of the number of children ( 18) of a randomly chosen American house-
hold:

p(0) p(1) p(2) p(3+)

1970 0.442 0.182 0.174 0.203
2008 0.541 0.195 0.169 0.095

• Bayesian interpretation: probability indicates the degree of belief in a way that is consistent with the
axioms. This allows us to consider events that are, strictly-speaking, not random.

– p(Heads) = 1/2 (both Bayesian and frequentist)

– p(Stock market will hit a certain threshold this year)

– p(Nuclear war this century)

– p(A certain person is guilty of a given crime)

Different interpretations lead to different approaches to problems, potentially leading to different real-life
decisions.

0.2 Sets and their sizes

Finding the probability of an event is easiest when all outcomes are equally likely. In such cases, if we can
measure the size of the set of desirable outcomes A, dividing that by the size of the sample space, will yield
the probability,

p(A) =
|A|
|⌦| ,

where |A| denotes the size of the set A.
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Definition 1. A set A is finite if there is a natural number n such that the number of elements in A is less
than n. Otherwise, it is infinite. If the elements of A can be counted, i.e., there is a one-to-one function
from A to natural numbers, then A is countable. Otherwise, it is uncountable. A countable set may be
finite (e.g., {1, 5, 6}) or infinite (e.g., integers, prime numbers, rational numbers).

If A is finite, we define its size (aka, cardinality) as the number of elements. This requires us to be able to
count:

• Sum rule: If an action can be performed in m ways and another action can be performed in n, and
further if we can choose which action to perform, in total we have m + n options.

• Product rule: If an action can be performed in m ways and another action can be performed in n,
and further if we must perform both actions, in total we have m ⇥ n options.

• Permutations: The number of ways we can arrange n objects is n! = 1 ⇥ 2 ⇥ · · · ⇥ n.

• Combinations: The number of ways we can choose k objects from a set of n objects is
✓

n

k

◆
=

n!

k!(n � k)!
.

Exercise 2. Prove that
�n

x

�
x = n

�n�1
x�1

�
.

Exercise 3. How many 8-bit bytes are there? How many of these have exactly 3 ones? If we pick a random
byte, what is the probability that it has exactly 3 ones? What is the probability that it has 6 or more
consecutive ones?
Exercise 4. How many binary sequences of length n that end with one are there with exactly k ones?

If the sample space has an infinite, even uncountable, number of outcomes, we may still be able to think of
the outcomes as equally likely. For example, if we pick a random number between 0 and 1 (doing this is
pretty difficult if not impossible), we may assume all outcomes are equally likely. In such cases, the size of
the set can be measured via length, area, volume, etc.
Exercise 5. A random number in the interval [0, 1] is chosen. What is the probability that it is more than
1/2 but less than 2/3? What is the probability that it is equal to 1/2? What is the probability that it is
rational(optional)?
Exercise 6. A random point is chosen in a square of unit side. What is the probability that it is inside the
circle of diameter one inscribed in the square? What is the probability that it is on the circle?

0.3 Random variables and distributions

A random variable is a function that assigns real values to outcomes in ⌦. In most cases, there is a very
natural mapping. For example, let X denote the number showing on a dice. Now X is a random variable,
mapping each outcome of the form “the dice shows i” to the real number i. For this reason, the fact that
random variables are really functions is often overlooked. Information about the probabilities of different
outcomes is given by the distribution of the random variable.

A random variable is discrete if there are a countable number of possibilities (could be infinite but countable,
like natural numbers). They can also be continuous (uncountable number of outcomes, defined over the real
line or some subset of some Euclidean space).

Examples: a random variable that is 1 if heads shows when a given coin is filliped and it is 0 otherwise
(discrete, finite); the arrival time of a plane in seconds from midnight ; the number of people buying a specific
product; ...
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0.3.1 Discrete distributions

The distribution of a discrete random variable X is given by its probability mass function (pmf) denoted
by pX(x), where

pX(x) = p(X = x).

Clearly, pX(x) � 0 for all x and X

x

pX(x) = 1.

If clear from the context, we drop the X in the subscript.
Exercise 7. A red die and a blue die are rolled. Let X denote the number showing on the red die and Y
denote the sum of the two dice. Find the pmf of X and the pmf of Y .
Exercise 8. Two cards are drawn at random from a standard deck of 52 cards and let Z denote the number
of Aces drawn. Find the pmf of Z.
Exercise 9 (Poisson Distribution). The number of times an event occurs in a given interval of times is
often assumed to have a Poisson distribution (with good reason). The RV W has Poisson distribution with
parameter � if

pX(k) =
�ke��

k!
, k � 0.

0.3.2 Continuous distributions

The distribution of a continuous random variable X is given by its probability distribution function (pdf)
pX(x), also sometimes denoted fX(x). Roughly speaking,

p

✓
x � dt

2
 X  x +

dt

2

◆
= pX(x)dt.

For two real numbers a, b,

p(a  X  b) =

ˆ b

a
pX(x)dx.

For any pdf, we have pX(x) � 0 and ˆ 1

�1
pX(x)dx = 1.

Exercise 10 (Exponential distribution). An exponential random variable X with parameter � has dis-
tribution

f(x) = �e��x, x � 0.

For � = 1, the probability that X is between 1 and 1.1 is around e�1 = 0.37 ⇥ 0.1 = 0.037.
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0.3.3 Cumulative distribution functions

Cumulative distribution functions (CDF) are defined for both discrete and continuous RVs as FX(x) =
pX(X  x) and can be found via summation or integration:

FX(x) =
X

kx

pX(x)

FX(x) =

ˆ x

�1
pX(t)dt

Example 11. The CDF of the exponential RV in Example 10 with � = 2 is given by

FX(x) =

ˆ x

�1
�e��tdt = 1 � e��x
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0.3.4 Expected value

The expected value or the mean E[X] of a random variable X with distribution p(x) is given by

E[X] =
X

x

xp(x),

E[X] =

ˆ 1

�1
xp(x)dx.

One way to think about the expected value is as the average of a large number of experiments. For example,
if a game pays $X each time you play with probability distribution p(x), if you play the game many times,
on average you will win $E[X] per game. That is if you play n times and n is large,

1

n
(x1 + x2 + ... + xn) ' E[X].

Exercise 12. Find the expected value of the discrete and continuous RVs in the examples above.
Exercise 13. Find E[1].

Expectation of functions of random variables

For an RV X and a function f(x) it follows immediately from the definition that

E[f(X)] =
X

x

f(x)p(x),

E[f(X)] =

ˆ 1

�1
f(x)p(x)dx.

(1)

Exercise 14. A random variable X has distribution

pX(�1) = 0.1, pX(0) = 0.2, pX(1) = 0.3, pX(2) = 0.4.

Find EX. Let Y = X2. Find EY , both by finding the distribution of Y and by using (5).

Linearity of expectation

For a RV X, functions f(x) and g(x), and real numbers a and b,

E[af(X) + bg(X)] = aE[f(X)] + bE[g(X)],

which can be proven easily from the definition of expectation.
Example 15. E[(X � a)2] = E[X2 � 2aX + a2] = E[X2] � 2aEX + a2.

Consider a collection of random variables X1, X2, . . . , Xn. By the linearity of expectation

E
"

nX

i=1

Xi

#
=

nX

i=1

EXi. (2)

If all variables are identically distributed, then

E
"

nX

i=1

Xi

#
= nEX1. (3)
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Example 16. In a class of n students, what is the expected number of pairs of students who have the same
birthday? To find this, for two students i and j, let Xij be equal to 1 if they share a birthday and 0 otherwise
and let X =

Pn�1
i=1

Pn
j=i+1 Xij . Now,

EX =

✓
n

2

◆
EX12 =

✓
n

2

◆
Pr(X12 = 1) =

✓
n

2

◆
1

365
' n2

730
. (4)

In particular, if n =
p

730 ' 27 students are enough to have on average one pair with the same birthday.
With n = 60 students, there should be around 5 such pairs.

Variance

Suppose someone offers you a game in which your expected winning is $100. Will you accept? Which game
would you play?

• You always win exactly $100.

• You win $0 with probability 1/2 and $200 with probability 1/2.

• You win $1200 with probability 1/2 and lose $1000 with probability 1/2.

All three have the same mean. So what’s different between them?

The mean helps us represent a distribution with one value, which describes the average behavior of the RV.
But as this example shows, the behavior around the mean is also important. Denoting the mean of X by µX ,
the variability around the mean is captured to a degree by the variance Var[X],

Var[X] = E[(X � µX)2].

The variance gives a sense of how far X is from its mean X, on average. The standard deviation, �X , is
defined as

�X =
p

Var[X],

and the variance is usually denoted as �2
X .

Exercise 17. Prove that
Var[X] = EX2 � (EX)2.

Exercise 18. Find the mean and variance of each of the following RVs [1]:

• X + c

• aX

• aX + c

• X�µX

�X

(called the standardized version of X)

0.3.5 Common distributions

We denote by X ⇠ Dist(a, b, . . . ), where a, b, . . . , are the parameters of the distribution.
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Discrete distributions

• X ⇠ Ber(p) : p(X = 1) = p, p(X = 0) = 1 � p, E[X] = p, Var[X] = p(1 � p).

• X ⇠ Bin(n, p) : p(x) =
�n

x

�
px(1 � p)n�x, 0  x  n, E[X] = np, Var[X] = np(1 � p).

• X ⇠ Geo(p) : p(x) = (1 � p)x�1p, x � 1, E[X] = 1/p, Var[X] = (1/p)2 � (1/p).

• X ⇠ NegBin(k, p) : p(x) =
�x�1
k�1

�
(1 � p)x�kpk, x � k, E[X] = k/p, Var[X] = k[(1/p)2 � (1/p)].

• X ⇠ Poi(�) : p(x) = �xe��

x! , x � 0, E[X] = �, Var[X] = �.

• X ⇠ Uni[a, b] : p(x) = 1
b�a+1 , x 2 Z, a  x  b, E[X] = a+b

2 , Var[X] = (b�a+1)2�1
12 .

Exercise 19. Prove that the mean of Bin(n, p) is as given using Exercise 2.

Continuous distributions

• X ⇠ Uni(a, b) : p(x) = 1
b�a , x 2 (a, b), E[X] = a+b

2 , Var[X] = (b�a)2

12 .

• X ⇠ N (µ, �2) : p(x) = 1p
2⇡�2

exp(� (x�µ)2

2�2 ), x 2 R, E[X] = µ, Var[X] = �2.

• X ⇠ Exp(�) : p(x) = �e��x, x � 0, E[X] = 1/�, Var[X] = 1/�2.

Sometimes, we drop the normalization constant, that is, the constant by which we divide to ensure that the
distribution integrates to 1. This could be because the constant is not important (e.g., in Bayesian inference)
or because it is hard to determine. In such cases, we use / to show proportionality rather than equality. We
should be careful which of the entities appearing is the variable. For example, viewed as a function of x, we
have f(x) = �xe��

x! / �x

x! and as a function of �, we have g(�) = �xe��

x! / �xe��.

• X ⇠ Beta(↵, �) : p(x) / x↵�1(1 � x)��1, 0  x  1, E[X] = ↵
↵+� , Var[X] = ↵�

(↵+�)2(↵+�+1) .

• X ⇠ Gamma(↵, �) : p(x) / x↵�1e��x, x > 0, E[X] = ↵
� , Var[X] = ↵

�2 .

Example 20. For the distributions given in this section, try changing what the variable is and what the
parameters are and check whether another distribution from the list can be obtained with appropriate nor-
malization. For example, Bin(n, p) viewed as a distribution in p is equivalent to Beta(x + 1, n � x + 1).

0.4 Joint probability distributions

Joint probability distributions allow us to encode information about relationships between quantities, from
independence to strongly correlated.

For random variables X and Y , the CDF and the pmf/pdf give their joint distribution, depending on their
type,

FX,Y (x, y) = Pr(X  x, Y  y), CDF for continuous and discrete
pX,Y (x, y) = Pr(X = x, Y = y), pmf for discrete

pX,Y (x, y)dxdy ' Pr

✓
x � dx

2
 X  x +

dx

2
, y � dy

2
 Y  y +

dy

2

◆
, pdf for continuous
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We can find the distribution for each random variable (in this context these are called the marginals) by
integration/summation,

pX(x) =
X

y

p(x, y), pX(x) =

ˆ 1

�1
pX,Y (x, y)dy.

0.4.1 Expectation, correlation, and covariance

Given two or more RVs, we may be interested in finding the expected value of a function of these RVs, e.g.,
E[XY ]. In such case, similar to (5), we have

E[f(X, Y )] =

ˆ 1

�1

ˆ 1

�1
f(x, y)p(x, y)dxdy, (5)

and similarly for discrete variables.

The correlation between X and Y is E[XY ] =
´ ´

xyp(x, y)dxdy. The covariance Cov(X, Y ) and the
correlation coefficient ⇢X,Y are defined as

Cov(X,Y ) = E[(X � µX)(Y � µY )]

⇢X,Y =
Cov(X, Y )

�X�Y
.

It can be shown that �1  ⇢X,Y  1. If ⇢ = 0, then the random variables are uncorrelated.
Exercise 21. Show that Cov(X, Y ) = E[XY ] � EX EY .
Example 22. The bivariate jointly Gaussian distribution for X,Y with means µX and µY , variances �X and
�Y , and correlation coefficient ⇢ is given as

p(x, y) =
1

2⇡�x�y

p
1 � ⇢2

e
� 1

2(1�⇢2)


(x�µX )2

�2
X

+
(y�µY )2

�2
Y

� 2⇢(x�µX )(y�µY )
�X�Y

�

.

Examples of this pdf are given in Figure 1.
Exercise 23. For random variables X, Y, Z and constants a, b, c, d, e, prove that

• Var(X) = Cov(X, X)

• Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, Z)

• Cov(aX, Y ) = a Cov(X, Y )

• Cov(X, b) = 0

• Cov(aX + bY + c, dZ + e) = ad Cov(X, Z) + bd Cov(Y, Z)
Exercise 24. Find the expected value and variance of X and Y from Exercise 7. Find Cov(X, Y ).

0.4.2 Independence

Recall that two events A and B are independent iff p(A \ B) = p(A)p(B). Two random variables X and Y
are independent, if {X 2 S1} and Y 2 S2 are independent for all sets S1 and S2. This implies that

p(x, y) = p(x)p(y). (6)
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Figure 1: Bivariate Normal pdfs with µX = µY = 0, �X = �Y = 1, with ⇢ = 0 (uncorrelated), ⇢ = .5
(positively correlated), and ⇢ = �.5 (negatively correlated), respectively.

Farzad Farnoud 11 University of Virginia



Estimation and Statistical Learning CHAPTER 0. REVIEW OF PROBABILITY

For two independent random variables, we have

E[XY ] = E[X]E[Y ] (7)

and Cov(X, Y ) = 0.
Exercise 25. Prove (7) using (6).
Exercise 26. For two independent RVs X and Y , find Var[X + Y ] and E[(X � Y )2 + 3XY + 5] in terms of
means and variances of X and Y .

A collection X1, . . . , Xn of random variables that are independent from each other but have the same distri-
bution are called independent and identically distributed (iid). We have

p(x1, . . . , xn) =
nY

i=1

p(xi). (8)

Exercise 27. For iid RVs X1, . . . , Xn, let E[Xi] = µ and Var[Xi] = �2. Show that

E[X̄] = µ, Var[X̄] =
�2

n
. (9)

0.4.3 Conditional probability and conditional distributions

For two discrete variables X and Y , the conditional probability distribution of Y given X is given by

pY |X(y|x) = Pr(Y = y|X = x) =
Pr(Y = y, X = x)

Pr(X = x)
=

pX,Y (x, y)

pX(x)
.

For continuous RVs, we also have pY |X(y|x) = pX,Y (x,y)
pX(x) . In this case, however, we interpret the conditional

density as

pY |X(y|x) ' Pr(y � ✏/2  Y  y + ✏/2|x � ✏/2  X  x + ✏/2)

✏
.

This essentially says to find pY |X(y|x), we first assume that X is in a narrow strip around x and then find
the density for Y given this assumption.

Law of total probability. Let A1, A2, . . . , An be a partition of the sample space. That is [n
i=1Ai = ⌦ and

for all i 6= j, we have Ai \ Aj = ?. For an event Bi, we have

p(B) =
nX

i=1

p(B \ Ai) =
nX

i=1

p(B|Ai)p(Ai).

In particular, if X can take on {1, 2, . . . , n}, then for another RV Y,

pY (y) =
nX

x=1

pY |X(y|x)pX(x).

Chain rule of probability. For events A1, . . . , An, we have

p(A1 \ A2 \ · · · \ An) = p(A1)p(A2|A1)p(A3|A1, A2) · · · p(An|A1, . . . , An�1),
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which can be easily proven by induction. A similar rule holds for random variables X1, . . . , Xn:

p(x1, . . . , xn) = p(x1)p(x2|x1)p(x3|x1, x2) . . . p(xn|x1, . . . , xn�1).

Conditional expectations are defined based on conditional distributions, e.g.,

E[X|Y = y] =
X

x

xpX|Y (x|y).

Exercise 28. Suppose the joint pmf is given as

pX,Y (x, y) x = 0 x = 1
y = 0 0.25 0
y = 1 0.5 0.25

Find p(y|x), p(x|y), E[Y |X = 0], E[Y |X = 1], E[X|Y = 0], E[X|Y = 1].
Exercise 29. A point is chosen uniformly at random in a triangle with vertices on (0, 0), (1, 0), (1, 1). Let X
and Y determine the x and y coordinates of the chosen point. Find p(x|y), p(y|x), E[X|Y = y], E[Y |X = x].

Law of iterated expectations. Consider a function g(x). Instead of a deterministic value for x, we can
consider a random value. An example of this was given in Exercise 14 with g(x) = x2.

Now let g(x) = E[Y |X = x]. This is, of course, a well-defined function. So we can consider g(X) = E[Y |X].
Now that we have a random variable, we can compute its expectation, i.e., E[E[Y |X]].
Exercise 30. A die is rolled, showing X. A coin is then flipped X times resulting in Y heads. Find E[Y ],
E[Y |X = x], the pmf of E[Y |X], and E[E[Y |X]].

It can be shown that

E[E[Y |X]] = E[Y ], E[E[Y |X, Z]|Z] = E[Y |Z]. (10)

0.4.4 Bayes’ rule

In Exercise 30, the conditional distribution p(y|x) is readily available as

p(y|x) =

✓
x

y

◆
2�x.

But what if we are interested in p(x|y)? Since p(x|y) = p(x,y)
p(y) and p(x, y) = p(y|x)p(x), we have

p(x|y) =
p(y|x)p(x)

p(y)
=

p(y|x)p(x)P
x0 p(y|x0)p(x0)

,

which is called the Bayes rule.
Example 31. In Exercise 30, we can use the Bayes rule to find p(x|y),

p(x|y) =

�x
y

�
2�x(1/6)

P6
x0=y

�x0

y

�
2�x0(1/6)

=

�x
y

�
2�x

P6
x0=y

�x0

y

�
2�x0

We may ask for example, what are the likeliest value for X if Y = 2. Below, pX|Y (x|2), i.e., the conditional
distribution of X when Y = 2 is given. We can see that the likeliest values for X are 3, 4.
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Bayes’ rule is used in evidential reasoning, examples of which we will see in the next chapter. In this setting,
the goal is to find the probabilities of different causes based on the evidence.

Bayesian inference takes its name from Bayes rule. In this setting it is often the case that we know the
distribution of data given the parameters. But what we actually have is data and need to find the distribution
of the parameters. The Bayes rule allows us to find this conditional distribution, a topic which will discuss
in detail later.

0.5 Inequalities and limits

0.5.1 Inequalities

Markov inequality

Suppose the average length of a blue whale is 22 m and we do not know anything other than the mean of
distribution of the lengths of blue whales. Can we say anything about the probability that the length of a
randomly chosen blue whale is � 30m? For example, is it possible that this probability is 0.8 or larger? No,
since in that case, the average would be � 0.8 ⇥ 30 = 24m. So only knowing the mean enables us to say
something about the extremes of the probability distribution.

This observation is formalized via the Markov inequality. For a non-negative random variable X, we have

Pr(X � a)  EX

a
.

Exercise 32. Prove the Markov inequality.

A special case of this occurs when X counts something, i.e., it only takes non-negative integer values. Then,

Pr(X � 1) = Pr(X > 0)  EX, Pr(X = 0) � 1 � EX.

In particular, if the mean EX is small, then there is a large probability that X = 0.
Exercise 33 (optional). Provide a bound on the probability that in a random binary sequence of length n,
there exists a run (consecutive occurrences) of 1s of length at least 2 log2 n? (The result will tell you that this
is unlikely for large n.)
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Chebyshev inequality

If in addition to the mean, we also have the variance, we can use the Chebyshev bound. For a random variable
X with mean µ and variance �2,

Pr

✓����
X � µ

�

���� � a

◆
 1

a2
.

Exercise 34. Prove the Chebyshev bound using the Markov bound.
Example 35. The Chebyshev bound tells us that being k standard deviations away from the mean has
probability at most 1/k2.

k 2 3 4 5 6 7 8 9 10
Probability of deviating
more than k⇥ std is  25% 11.1% 6.25 % 4% 2.78% 2.04% 1.56% 1.23% 1%

In particular, being 10 standard deviations away from the mean has probability at most 1%.

0.5.2 Limits

Limits in probability provide a way to understand what happens when the number of experiments grows or
many random effects accumulate. Limit theorems are beneficial given that we often deal with large volumes
of data. The following limit theorems will be helpful to us later in the course.

Law of large numbers

Let X1, . . . , Xn be random variables with mean µ and variance  �2 and suppose that for each i and j, Xi

and Xj are uncorrelated (in particular, it is sufficient for them to be independent). Also, let X̄n = 1
n

Pn
i=1 Xi.

Then, for any ✏ > 0,

Pr
�
|X̄n � µ| � ✏

�
 �2

n✏2
. (11)

As n becomes large the right side becomes smaller and smaller. So for large n the probability of X̄n being too
far from the mean is very small. This is referred to as the Law of Large Numbers (LLN). In other words,
if we take n independent samples from a random variable X, then the average of those samples will be close
to the mean EX,

1

n
(x1 + x2 + ... + xn) ' E[X],

which is what we used to motivate expected value.
Exercise 36. Use the Chebyshev inequality to prove LLN when random variables are independent and all
have the same variance �2.
Example 37. Suppose Xi ⇠ Poi(2), 1  i  500, and let X̄n be the average of the first n Xis. Figure 2
shows the plot for X̄n for a realization of Xis obtained via computer simulation. It is observed that for large
values of n, X̄n is close to 2, the mean of the Poisson distribution.

Central limit theorem

Let X1, X2, . . . be iid random variables with mean µ and variance �2 and let X̄n = 1
n

Pn
i=1 Xi. As n ! 1.

The Central Limit Theorem (CLT) states that

distribution of
p

n(X̄n � µ) ! N (0, �2). (12)
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Figure 2: X̄n based on Xi ⇠ Poi(2) as a function of n.

That is, the distribution of
p

n(X̄n � µ) approaches the distribution of a normal random variable with mean
0 and variance �2.

Loosely speaking, the CLT also means Sn =
Pn

i=1 Xi has distribution N (nµ, n�2).
Example 38. Let Xi ⇠ Uni(0, 1), 1  i  n = 10. We produce 50, 000 samples of X̄n (and Sn), and plot the
normalized histograms for

p
n(X̄n � µ) and the pdf of N (0, �2) and the normalized histogram for Sn and the

pdf of N (nµ, n�2) in Figure 3.
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0
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1

Figure 3: The normalized histograms for
p

n(X̄n �µ) and the pdf of N (0, �2) (on the left) and the normalized
histogram for Sn and the pdf of N (nµ, n�2) (on the right) for uniform Xi with µ = 1/2 and �2 = 1/12 and
with n = 10.
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