
Chapter 10

Parameter Estimation in Graphical
Models

10.1 Introduction
A graphical model has two components: the graph structure (the nodes and their connections),
and the conditional probability distributions/potential functions, which are usually expressed in
parametric form. In this chapter:

• We will consider the problem of estimating the parameters in graphical models. The problem
is simpler in the case of Bayesian networks and for simplicity, that is were our attention will
be focused.

• However, we will not consider the more challenging problem of learning the structure of a
network. The best case scenario is that you have good reason to design a graph in a certain
way, e.g., based on causality.

10.2 Maximum Likelihood Estimation in Bayesian Networks
Consider a BN with known graph with m nodes x1, . . . , xm in which the parameters of the condi-
tional distribution are unknown. There are m conditional probability distributions (CPDs)1, one
for each node, and each of these has an unknown parameter vector. We denote the concatenated
vector of all parameters as θ = (θ1, . . . ,θm). To determine the parameters, we collect a dataset
D = {x1, . . . ,xn} of n iid samples, where xi = (xi1, . . . , xim).

Example 10.1. As an example, we may consider the network from previous chapters with the
vector of parameters θ = (θT , θC ,θA,θB).

1Some of the nodes do not have any parents so their distribution is not conditioned on any other nodes. We
view these as conditioned on the empty set and thus refer to all probability distributions in a Bayesian Network as
conditional probability distributions.
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T

P (T = 0; θT ) = θT

A B

P (B = 0|C = 0, T = 0;θB) = θB00

P (B = 0|C = 0, T = 1;θB) = θB01

P (B = 0|C = 1, T = 0;θB) = θB10

P (B = 0|C = 1, T = 1;θB) = θB11

C

P (C = 0; θC) = θC

P (A = 0|T = 0;θA) = θA0

P (A = 0|T = 1;θA) = θA1

Our goal is to determine θ by collecting data and determine the conditional probability distributions,
thereby determining the network. To collect data, on n days, we record whether there is heavy
traffic and whether Alice, Bob, and/or Charlie are late. 4 4

We can find the parameters through maximum likelihood. Given that our network can have many
nodes, the size of the parameter vector may be very large. This would create computational
difficulties since it would require maximizing a function of many variables. Fortunately, in the
case of Bayesian networks, the problem decomposes to estimating the parameters for each nodes
separately as we will show. To see why this is helpful, suppose that we optimize by grid search, i.e.,
trying a set of values at regular intervals. If we try K points for one dimension, for m dimensions we
need to try Km points to get the same precision. However, if we optimize m parameters separately,
then we only need to try mK points, typically a significantly smaller number.

Decomposability of likelihood. For the ith data sample, the likelihood function is

p(xi;θ) =

m∏
j=1

p(xij |pa(xij);θj)

and thus the log-likelihood of the whole dataset is

`(θ) =

n∑
i=1

ln p(xi;θ) =

n∑
i=1

m∑
j=1

ln p(xij |pa(xij);θj) =
m∑
j=1

n∑
i=1

ln p(xij |pa(xij);θj).

Thus for a given j, θj only appears in the term
∑n

i=1 ln p(xij |pa(xij);θj) and no other θk ap-
pears in this term. So each θj , and thus each conditional probability distribution, can be learned
independently of the others.

Exercise 10.2. For the TABC network above, what would our data look like? What is the ML
estimate for each parameter based on this data? 4

10.3 Bayesian Parameter Estimation in Bayesian Networks
Suppose that we want to estimate the parameters of the conditional probability distributions of a
Bayesian network using Bayesian inference. Since in the Bayesian view, parameters are considered
random, we can augment the Bayesian network by adding the parameters as nodes. In particular,
we can recast Bayesian estimation problems that we have seen before as Bayesian networks.
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10.3.1 Bayesian Estimation formulated as Bayesian Networks
Example 10.3. As a simple example, consider the Bayesian network consisting of a singe node y
whose distribution has an unknown parameter θ. We can transform this to a network with node θ
and y, in which the conditional distributions are the prior p(θ) and the likelihood p(y|θ).

y

p(y|θ)

=⇒
y p(y|θ)

θ p(θ)

The joint distribution resulting from the network is p(θ, y) = p(θ)p(y|θ), which indeed factorizes
with respect to the network on the right. Now, if y is given (which we show by a hatched pattern),
we can find p(θ|y) using Bayes rule,

y p(y|θ)

θ p(θ)

p(θ|y) = p(y,θ)
p(y)

= p(θ)p(y|θ)
p(y)

4

Example 10.4. The problem in Example 10.3 becomes more interesting when we have n indepen-
dent samples, D = {y1, y2, . . . , yn}, from the distribution. We can simplify the network with the
plate notation, by representing nodes that have the same conditional probability distribution (and
are independent) using plates, as shown below.

θ

y1 y2 · · ·

· · ·

yn

≡

yi

n

θ

The joint distribution of θ and yn1 can be written as

p(yn1 , θ) = p(θ)

n∏
i=1

p(yi|θ),

and the posterior distribution for θ as

p(θ|yn1 ) ∝ p(yn1 , θ) = p(θ)

n∏
i=1

p(yi|θ).

4
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Example 10.5. Following Example 10.4, suppose we have n independent samplesD = {y1, y2, . . . , yn}
from the distribution. We want to predict the distribution of the next sample p(yn+1|yn1 ). The graph
is shown below.

θ

yi

n

yn+1

We have

p(yn+1|yn1 ) =
ˆ
p(yn+1, θ|yn1 )dθ =

ˆ
p(θ|yn1 )p(yn+1|θ, yn1 )dθ =

ˆ
p(θ|yn1 )p(yn+1|θ)dθ

where in the last step we have used yn+1 ⊥⊥ yn1 | θ, which follows from d-separation. Furthermore,

E[yn+1|yn1 ] = E[E[yn+1|θ, yn1 ]|yn1 ] = E[E[yn+1|θ]|yn1 ]. (10.1)

Roughly speaking, to learn about yn+1 given yn1 , we must first learn about θ since this is the node
that connects yn1 and yn+1.

For example, assume p(θ) ∝ 1, yi|θ ∼ Ber(θ), and that out of the n samples yi, there s 1s and f
0s. Then

p(yn+1 = 1|yn1 ) = E[yn+1|yn1 ] = E[E[yn+1|θ]|yn1 ] = E[θ|yn1 ] =
s+ 1

s+ f + 2
.

4

10.3.2 Estimating Parameters of CPDs in Bayesian Networks
So far for the most part, we have cast Bayesian inference problems that we had seen before as
Bayesian networks. In the next example, we consider the problem of estimating the parameters of
the conditional probability distributions (CPDs) of Bayesian network.

Similar to Section 10.2, consider a BN with m nodes x1, . . . , xm in which the parameters θ =
(θ1, . . . ,θm) of the CPDs are unknown. Our dataset is D = {x1, . . . ,xn} consisting of n iid
samples, where xi = (xi1, . . . , xim). We are interested in determining p(θ|D) and p(xn+1|D).

Example 10.6. Let us consider a simpler version of the network given in Example 10.1, with
unknown parameter vector θ = (θT ,θA,θB),

T

P (T = 0|θT ) = θT

A B

P (B = 0|T = 0,θB) = θB0

P (B = 0|T = 1,θB) = θB1

P (A = 0|T = 0,θA) = θA0

P (A = 0|T = 1,θA) = θA1
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Given n samples D = {(T1, A1, B1), . . . , (Tn, An, Bn)}, and our goal is to estimate the posterior we
augment the network as

so that we can learn about p(θA,θB , θT |D) and p(Tn+1, An+1, Bn+1|D). 4 4

Decomposability of posterior and predictive posterior. Consider a Bayesian network with
n×m nodes for the data D = {x1, . . . ,xn} where xi = (xi1, . . . , xim); m nodes for θ1, . . . ,θm; and
m nodes for the future observation xn+1,1, . . . , xn+1,m as shown below (see also the second graph
in Example 10.6 for a concrete example)

Let us start by trying to decompose p(θ|D). First, note that by d-separation

p(θ|D) =
m∏
j=1

p(θj |D).

Next, define
Nj = {x1j , . . . , xnj ,pa(x1j), . . . ,pa(xnj)}, (10.2)

i.e., the set of children and parents of children of θj among the nodes of D. Similar to Markov
blankets, we see that θj ⊥⊥ D \Nj | Nj . That is, given Nj , θj is independent of all other nodes in
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D, and so p(θj |D) = p(θj |Nj). Hence,

p(θ|D) =
m∏
j=1

p(θj |D) =
m∏
j=1

p(θj |Nj). (10.3)

This is good news, because it means we can find the posterior for the parameters of each CPD can
be computed separately.

Exercise 10.7. Using the Bayesian network above, prove that the last two equalities in the ex-
pression below hold:

p(θ,xn+1 | D) = p(θ|D)p(xn+1 | D,θ) = p(θ|D)p(xn+1|θ) (10.4)

= p(θ|D)
m∏
j=1

p(xn+1,j |θj ,pa(xn+1,j)). (10.5)

We can find the posterior predictive p(xn+1|D) by integrating the above expression with respect to
θ. 4 4

Example 10.8. Getting back to Example 10.6, let us find p(θA|D) and p(An+1, Bn+1|D). As
in (10.2), the set of children and parents of children of θA among data nodes areNA = {A1, . . . , An, T1, . . . , Tn}
and

p(θA|D) = p(θA|An
1 , T

n
1 ).

This makes intuitive sense: to estimate the probability of Alice being late as a function of traffic,
only the part of data that deals with Alice’s arrival time and traffic is relevant.

Assuming that the prior satisfies p(θA) = p(θA0)p(θA1),

p(θA|An
1 , T

n
1 ) ∝ p(θA)p(Tn

1 |θA)p(An
1 |Tn

1 ,θA)

= p(θA)p(T
n
1 )p(A

n
1 |Tn

1 ,θA)

∝ p(θA)p(An
1 |Tn

1 ,θA)

= p(θA)

n∏
i=1

p(Ai|Tn
1 ,θA)

= p(θA)

n∏
i=1

p(Ai|Ti,θA)

=

(
p(θA0)

∏
i:Ti=0

p(Ai|Ti = 0, θA0)

)(
p(θA1)

∏
i:Ti=1

p(Ai|Ti = 1, θA1)

)
.

Since the terms depending on θA0 and θA1 separate, they are conditionally independent and we can
estimate them separately: Hence, the estimators of θ0A and θ1A are

p(θA0|D) ∝ p(θA0)
∏

i:Ti=0

p(Ai|Ti = 0, θA0),

p(θA1|D) ∝ p(θA1)
∏

i:Ti=1

p(Ai|Ti = 1, θA1).
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Suppose p(θ0A) ∼ Beta(1, 1) and out of 100 days with no traffic, in 40 days Alice was on time.
Hence,

θA0|D ∼ Beta(41, 61).

Furthermore, the posterior probability of the next sample (An+1, Bn+1) is

p(An+1, Bn+1|D) =
ˆ
θ

p(An+1, Bn+1,θ|D)dθ

=

ˆ
θ

p(θ|D)p(An+1, Bn+1|θ)dθ.

In general, such integrals may be difficult to find analytically. In practice, we rely on computational
methods such as Markov Chain Monte Carlo (MCMC). Alternatively, to predict future values, we
can use a Bayesian point estimate for θ, and then assume that they are known as shown below.

T

P (T = 0) = θ̂T

A B

P (B = 0|T = 0) = θ̂B0

P (B = 0|T = 1) = θ̂B1

P (A = 0|T = 0) = θ̂A0

P (A = 0|T = 1) = θ̂A1

4

10.4 Parameter Estimation in MRFs
Recall that for an MRF G, the probability distribution is given as

p(x;θ) =
∏

c is a clique in G

ψθ(xc)/Z(θ),

where Z(θ) =
∑
x

∏
c ψθ(xc) is the partition function. Let us consider the frequentist estimation

of θ, e.g., maximum likelihood. Unfortunately, the log-likelihood function does not decompose into
terms each depending on one component of θ. This is due to the presence of the partition func-
tion, which generally depends on all the components of θ, leading to a high-dimensional problem.
Furthermore, computing the partition function is a computationally difficult task since it involves
computing a sum with possibly exponentially many terms.
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