Chapter 6

Linear Classification

In a classification problem, we have an input vector x together with a corresponding label y. Based
on a data set {(x1,y1), (®2,92), ..., (Tn,yn)}, our goal is to predict y given a new value for . If y
is a continuous variable the problem is that of regression, whereas in classification problems, y will
represent a set of discrete class labels. For example, we may wish to classify images of handwritten
digits. In this case, x is a vector providing the values of pixels of the image and y € {0,1,...,9} is
the label indicating what digit the image represents.

6.1 Overview of probabilistic models

The probabilistic approach to classification requires us to learn the distribution p(y|x), which for
any given x provides the probability of belonging to different classes. We can identify the class for
a given x as the class that has the maximum probability,

y(z) = arg mjaxp(y = jlz).

This choice minimizes the probability of predicting the wrong class
L =Pr(j(z) #y) =E[I(y # j(x))].

To find the distribution p(y|x), our first step is developing a model that relates @ and y. There are
two possible approaches.

We may develop a generative model, i.e., a model that is capable of generating data and also
helping us predict y for a given . A generative model has two components, both of which must be
learned from data:

e Prior class probabilities: p(y)
e Class-conditional probabilities: p(x|y)



ESL Chapter 6. Linear Classification

From these, using Bayes’ theorem we can find p(y|x) as

p)p(zly)
p(z)

We can often estimate p(y = j) simply by computing the fraction of class j in our training data. For

p(x]y), a common approach is to represent it parametrically and then learn the parameters from

the data. For example, we may assume that given class j,  is distributed normally with mean p;
and covariance matrix K; and then learn these parameters from data.

pylz) = o p(y)p(x|y).

Alternatively, we can develop a discriminative model. In this case, we directly model p(y|x)
since this is the distribution that we need to decide which class « belongs to.

6.2 Generative Probabilistic Models

6.2.1 Gaussian Class-Conditionals

Let us denote
ply =J) =m;.
We further assume p(z|y = j) is Gaussian with mean p; and covariance matrix X,
1 Ty—1
—5(@ =) I (- py)

. 1
p(xly =j) = MQXP< B
j

For our purpose, it suffices to consider Inp(x|y = j), which, after dropping the constant terms,
becomes

| 1 _
Inp(aly = ) = —3 Wl%] — 5@ — )5 @ — ).
From these, we can find Inp(x|y = j) and then decide g(x) as
j(x) = argmaxInp(y = jlz).

More specifically,

1

Inp(y =jle) =Inm; — 51n|§]j| _ 5(

x— ) 5 (@ - )
v 1y Ts—1 | 1
=x 752]- z+ (1, pp Jo + L 2y — 3 In|%;| +lnm; (6.1)
=z Az + Bl + 7,
For an appropriately defined symmetric matrix A;, vector 3;, and scalar v;. In the next two
sections, we will consider two cases based on whether the covariance matrix depends on the class.
6.2.2 Linear Discriminant Analysis

First, let us suppose all classes have the same covariance matrix ¥; = Y. Then, the terms
7 (-1¥7)2 and —% In|%;| in (6.1) become independent of the class and we thus have

Inp(y = jlo) = B8] =+ v;, (6.2)
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where

. 1 e
B =wi=h =gy 4 I,

Suppose we have only two classes, y = 0 and y = 1, with p(y = 1) = 7 = 1 — p(y = 0). Equivalent
to finding arg max; Inp(y = j|x) for each x, we can divide the space into two regions,

g=1
mMy=H@Aihw@=0M)
o=
What is the decision boundary between them? We can find it by solving Inp(y = 1jz) = Inp(y =
0l),
Blz+n=Blz+7% < Bi—B0) z+mn—10=0 = Bz+7=0,

where

- }(#1 — 10) "= (1 + po). (6.3)

T Te—1
B = —pg) X =1
(11 o) ’ R

Hence, the decision boundary is the hyperplane 87« 4+ v = 0. On one side of this plane, we predict
class 1 (we let §(z) = 1) and on the other side, we declare class 0:

. 1, BTz+~v>0
J(x) = T
0, Bfz+~v<0

Since the boundary is linear (i.e., a hyperplane such as a line, 2-D plane, etc), this method is called
Linear Discriminant Analysis (LDA).
As a special case, consider, m = %, > = I. The the boundary becomes

K1+ o
(1 — po)” (33 - 2) =0,

which implies that the boundary is the plane that passes through the midpoint of the line connecting
p1 and pg and is perpendicular to it.

What about the probability p(y|x) of each class for a given &, which can tell us about the certainty
of belonging to each class? From (6.2), we have p(y = jlz) x e85 =5 and so for two classes

eBlz+m 1
= = (
BTzt | eBiz+v 1 4 ¢~ (BT2+7) 7

ply = 1lx) = BTz + ),

where 3 and ~ are given in (6.3), and o(u) = is the sigmoid (logistic) function.

1
1+e—w
If there are ¢ > 2 classes, decision hyperplanes between pairs of classes will divide the space into ¢
regions. And the conditional probability of class j is given by

eﬁijJer

- At = . T T
Zz_l B+ JJ(/Bl T+, 8.+ Ye),

ply = jlx) =

where 0;(v) = Ee’:'vk is the softmax function.
k
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LDA and QDA for Classes with Same Covariance LDA and QDA for Classes with Different Covariances

QDA Decision Boundary ‘
LDA Decision Boundary [

QDA Decision Boundary
LDA Decision Boundary

Figure 6.1: LDA vs QDA for when ¥; = X5 (left) and when ¥; # ¥y (right).

6.2.3 Quadratic Discriminant Analysis

Let us now assume that each class has a different covariance matrix ;. To decide between two
classes, say y = 0 and y = 1, the decision boundary is given by Inp(y = 1|x) = lnp(y = 0|x). This
will lead to a quadratic equation of the form x” Az + 37x + v = 0, which leads to a nonlinear
decision boundary. As a result, this method is called Quadratic Discriminant Analysis (QDA).

Figure 6.1 demonstrates LDA and QDA when ¥; = X (left) and when ¥; # 35 (right). Here
the boundaries are learned from data (see Section 6.2.2). On the left the data is generated by
distributions that match the assumption made by LDA and so LDA and QDA perform similarly.
However, on the right the covariances are different and so, as expected, QDA performs better.
Note however that we could augment our feature vectors as (z1,x2,¥122,27,235) instead of just
(z1,z2) and then apply LDA, allowing a decision boundary that is not linear in z1,2s. In that
case, the performance of LDA would generally be similar to that of QDA (Hastie et al,. Elements
of Statistical Learning).

6.2.4 Maximum Likelihood Solution to LDA

Once we specified a parametric form for the class-conditional densities p(x|y = j), we can determine
the values of the parameters, together with the prior class probabilities p(y = j), using maximum
likelihood.

Data: Our data set comprises of observations of & along with their corresponding class labels.
Let the n independent samples be denoted by D = {(x1,11), (®2,92), ..., (Tn,yn)}, where &, € R™
and y; € {0,1} for all 7.
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Model:
o j=1
p(y =J) {lm =0
p(xly = 0) ~ N(po, %),
p($|y =1 NN(AU/l’ 2)7
for some 7, pg, 1 and diagonal matrix ¥ = diag(o?,03,...,02,). Note that since we assume both

classes have the same covariance matrix, the decision boundary will be linear (i.e., LDA). Also,
we have assumed given the class, features are independent (since ¥ is diagonal); this is called the
Naive Bayes model.

Likelihood:

n

p(Dlr, po, 1, %) = [ [ pwo)p(@ilys) = | [ plwop@ily) || T plwp(:ly:)

i=1 iy =0 tyi=l
" 1
=[] (a-m]I = exp(—(w3; = 10,3)*/207) |
2:y;=0 Jj=1 27r0j

TT (71 — 2= exp(— ey — pn)2/202) |

iyi=1 j=1 ,/271’(7]24

where x; ; is the 4t component of z; and Ho,j, [41,5 are the 4t components of pg and p1, respectively.
The maximum likelihood solution is (exercise)

~ _ Zi:yi:O Li,j ~ Zi:yi:l L, j

) (A)mL = T’

1 . )
(@)wr = — > @iy —i0 )+ Y (@i — )’

3:y; =0 iy;=1

6.2.5 Generative Model for Discrete Features **

If a features is categorical, for example, type of a vehicle or genre of a movie, we can encode them as
binary vectors. For example, if there are three categories, with the vector (1,0,0) we can indicate
belonging to the first category. This is called one-hot or dummy encoding. In this case, our data is
still denoted by (z1,¥1),- .-, (Tn,Yn), where each x; is composed of vectors, that is*

Ty = (iﬂﬂ,u-,ﬂ?im),

LAll vectors in this section are column vectors and all concatenations are also along the vertical dimension.

i : : _ - T _ (0T T
However, for simplicity of notation, we write @; = (€;1,...,%im) instead of ; = (a;;,...,=;,,)
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and each x;; = (xij1,...,%4j,...) is a binary vector of finite length which represents a one-hot
encoding of a feature.

Example 6.1 (One-hot encoding). Suppose 1, @2, ...,&,, provide information about a set of
movies, where 1 = (€11,...,T1m), T2 = (T21,...,T2m), ..., With @1, T, ..., x,, denoting in or-
der the genre of the movie, the director of the movie, etc. Explicitly, for the genre, if we order
them as (comedy, horror, drama, scifi, action), and for five directors A, B,C, D, E, order them as
(A,B,C,D,E), then 11 = (0,0,1,0,0), 212 = (0,0,0,1,0) means movie 1 is a drama directed by
director D, and @21 = (1,0,0,0,0), x5 = (1,0,0,0,0) means that movie 2 is a comedy directed by
director A. A

Model: We model this classification problem in the following way:
p(ziji = 1yi = k) = miju, > i =1,
1

and all ;5 are independent from one another. For two vectors a, b with the same length, we define
ab = Hgl a¥. Let my; = (j1, - -.). We have
p(xijlys = k) = my;’
and then . -
p(@ilys = k) = [ [ p(milyi = k) = [[ ey’ =i,
j=1 j=1

where N = (Mk1, - .., Nem). It follows that
plyi = klz:) o pailys = k)p(ys = k) = memi* oc exp(Inmy, + @] Inny,).
For a new data point (x,y), we similarly have
lnp(y = klz) = By z + i, (6.4)

where B, = Inn and v, = In7g. The log-probabilities are again linear in @, an fact that as we
will see contributes to the motivation for logistic regression.

6.2.6 Class-conditionals from the exponential family

The exponential family of distributions includes common distributions such as Gaussian, exponen-
tial, gamma, beta, Dirichlet, Bernoulli, Poisson, and geometric. Distributions from this family have
the following form

p(x|0) = exp[b(8)" a(z) + f(z) + 9(0)]-

Let us consider the case in which a(x) = @, and parameters are functions of class y. So instead of
0 we write 8;, when considering the jth class. Then the class-conditional distribution will become
p(ly = j) = exp[b(8;)" = + f(x) + g(6;)]-

Furthermore, let p(y = j) = ;. Given @, the log-probability of each class is given as
Inp(y = jlo) = Inm; +Inp(xly = j) = Int; + b(0;) = + g(6;) = 8] = +;, (6.5)

where 3; = b(6;) and v; = In7; + g(0;). So for a large class of class-conditional probabilities, the
log-probabilities of classes given the feature vector x is linear in x.
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6.3 Discriminative Models and Logistic Regression

In the discriminative approach, we model p(y = j|x) directly. But what is a good model? As we
have seen in (6.2), (6.4) and (6.5), in many generative cases, the log-probabilities of classes given
data is linear in x,

Inp(y = jlz) = B] = + ;.
And based on Section 6.2.2, this form leads to linear class boundaries and posterior class probabil-
ities of the logistic form for two classes,

1 e~ (BTz+)

p(y = 1llz) = T oo’ p(y = Olz) =

where 8 =31 — B2 and v =71 — 7.

Limiting ourselves to two classes, this observation raises the following question: ‘Why not assume
from the beginning that p(y|x) is of the logistic form and learn this distribution instead of learning
first p(x|y) and p(y)?’ Doing so leads to a discriminative model resulting in logistic regression.

Let h(z) = p(y = 1]x) and assume that the data consists of n iid samples, D = {(x1,y1), .- ., (Tn, Yn)}-
We have

»(D;B,7) Hh )i (1 — h(a;)) Ve

and the negative log-likelihood loss is given by

n 1 1
- L = in——+ (1 —y;)In —— |. 6.6
B0 == (i gy + 0w s ) (6.6
We can use gradient descent to minimize this loss (maximize the likelihood). For simplicity, let

_(B) - (= — oy =
0—(7 &= ,and hg = p(y = 1|z) = T L. Then

0Ut) =0 + p,VoL(6),

where
n

VeL(8) =) (yi— ho(®:))&;

i=1
When we find @ and thus 3,7 we have the decision boundary as 87« + v = 0. Points x for which
BTx 4+~ > 0 are classified as class y = 1.

6.4 Risk minimization and loss functions for classification

An alternative approach to generative models and logistic regression we discussed before is directly
minimizing an empirical loss,

1< R
*ZL(yi»iBmy(iﬂi)%
i
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v

Figure 6.2: A linear classifier defined by the vector 3 and scalar . Squares represents points with
y = +1 and circles y = —1. For a point «;, many loss functions can be viewed as a function of the
signed distance d; of x; to the decision hyperplane.

where §(x) is the predictor of the class for input vector . For ease of exposition, instead of
assuming y € {0,1}, we assume y € {—1,1}.

Our attention will be limited to linear classifiers, determined by a vector 3 and a constant -y, which
define the hyperplane 87« +~ = 0. On one side of the hyperplane, we decide class 1 and the other
side class -1,

1, ifpTz+~y>0,

~ e T _
§() = sign(87x + ) {_17 ATt 20

where the dependence of § on 3, is implicit.

One such linear classifier is shown in Figure 6.2. Below, we will use the fact that for any point x;
with label y; and prediction g(x;), the loss contributed by it can often be viewed as a function of
its signed distance d; to the decision hyperplane. Without loss of generality, assume that y; = 1
and x; = xg + d;3/||3|| for some xg on the decision boundary. If d; is positive, then this point is
classified correctly, since 37 x; ++ > 0. The distance between x; and the decision boundary equals
||

6.4.1 Zero-one loss
The most natural loss function for classification is the 0-1 loss,

L ify#@(m)}{l, if y(87 +) <0,

Loi(y, 9(z)) = {07 if y = () 0, ify(BTz+~)>0.

Figure 6.3 shows the 0-1 loss for a point in the positive class. Note that how far the point is from
the boundary does not affect how much it contributes to the loss.
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Figure 6.3: Loss functions for a data point (x;,y; = 1) as a function of the distance of x; from the
boundary (in terms of the length of 3).

Unfortunately, minimizing this loss function is computationally difficult (NP-hard) [1]. So in prac-
tice, we use differentiable loss-functions for which efficient algorithms exist. Here we will consider
two such loss functions. First, we view logistic regression in terms of empirical risk minimization
and then we will consider the hinge loss in the context of support vector machine (SVM) classifiers.

6.4.2 Logistic regression

Let us re-examine the logistic regression loss function (6.6). The loss incurred by a data point x;
at signed distance d; from the decision hyperplane (i.e., x; = xo + d;3/||8||) is

In(1 + e—(ﬁTmH-’)’)) _ 1n(1 4 e_diHﬁH)_

The figure below shows this loss: For d; < 0, where the input is misclassified, the loss is larger,
and it increases as the point gets farther from the boundary. But even for points that are classified
correctly, there is a loss, which decreases as we get farther from the boundary.

6.4.3 Hinge loss (SVM)

Hinge loss results from penalizing misclassified points as well as those that are classified correctly,
but are within a certain margin close to the decision boundary. The expression for hinge loss is

max(0,1 - y;(B i +7)).
Letting y; = 1 and x; = g + d;3/||3|| as before, results in

max (0,1 — di[|B]]).
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which is shown in Figure 6.3. So the penalty for misclassified points is larger the farther away they
are from the boundary. In addition, even points classified correctly are penalized if they are within
a margin of width 1/||3|| of the decision boundary.

In addition to penalizing points within the margin, we would like to ensure that the margin is not
very small. This can be done by ensuring 1/||3| is large or equivalently ||3]|? is small. Both of
these goals can be achieved with the loss

%Zm“(o»l — (B @i + 7)) + MBI, (6.7)
=1

where ) is a constant that balances the two components of the loss. This results in the so called
support vector machine classifier (SVM).

SVM as maximum-margin classifier. Let us consider the case in which the data is linearly
separable, i.e., there exists a hyperplane that correctly classifies all data points. In such a case, as
shown in Figure 6.4a, there are typically an infinite number of separating hyperplanes. This leads
to the question of which one should be chosen. The SVM loss given in (6.7) provides a solution.
Assume ) is positive but very small. So we are primarily concerned about the first term in the
loss, i.e., the hinge loss. Between choices that incur the same hinge loss, we must pick the one that
maximizes the margin, i.e., minimizes ||3||?>. Thus:

e We can make the hinge loss term zero by choosing any separating hyperplane that makes no
mistakes and choosing any margin (length of ||3||) that is small enough such that there no
points within the margin.

e Now the second term ensures that among the hyperplanes that perfectly separate the data,
we should pick the one that has the maximum margin, as shown in Fig. 6.4b.
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A
|
(a) For two linearly separable classes, there are
an infinite number of classifiers that perfectly (b) The maximum-margin classifier is the clas-
separate the training data. Which one should sifier that maximizes the distance between the

we pick? decision boundary and the closest points to it.

Figure 6.4: SVM for separable data
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