
Chapter 4

Multivariate Random Variables

In this chapter, we will review some topics related to random vectors, which will be of use in the
following chapters.

4.1 Review of Linear Algebra
For two vectors x,y ∈ Rn, the inner product 〈x,y〉 of x and y is

x =

x1...
xn

, y =

y1...
yn

, 〈x,y〉 = xTy =

n∑
i=1

xiyi.

where xT is the transpose of x.

The length or the `2 norm of a vector x is ‖x‖ = ‖x‖2 =
√
xTx and we have ‖x‖22 = xTx. Let

α be the angle between x and y. Then xTy = ‖x‖‖y‖ cosα. If xTy = 0, then the two are called
orthogonal.

For a collection of vectors v1, . . . ,vm, a linear combination of these is any vector of the form
a1v1 + · · · + amvm, ai ∈ R. The set of all linear combinations of v1, . . . ,vm is their span and
denoted as Span{v1, . . . ,vm}. This is a subspace (think line, plane, or the whole space). For a
matrix A, the span of the columns of A is the column space of A.

The vectors v1, . . . ,vm are linearly independent if there is no vector among them that can be
written as a linear combination of the others, and linearly dependent otherwise. The vectors are
linearly independent if and only if the only values for a1, . . . , am satisfying a1v1 + · · ·+ amvm = 0
are a1, . . . , am = 0. In particular, the columns of a matrix A are linearly independent if and only
if the only vector a satisfying Aa = 0 is a = 0.

The inverse of a square matrix A is a matrix A−1 such that AA−1 = A−1A = I, where I is the
identity matrix, which has 1s on the diagonal and 0s elsewhere. A matrix that has an inverse is
called invertible. For a square matrix A, the following are equivalent:
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• It is invertible.

• For all distinct vectors a and b, we have Aa 6= Ab.

• The only solution to Ax = 0 is x = 0.

• Its columns are linearly independent.

• Its determinant |A| is nonzero. (We also have |A−1| = 1
|A| .)

Given a subspace S (e.g., a plane or the column space of a matrix) and a vector y, let ŷ be the
vector in the subspace that is closest to y. That is, we find ŷ ∈ S such that ‖y − ŷ‖ is minimized.
Then ŷ is called the projection of y onto the subspace S.

Lemma 4.1. Let ŷ be the projection of a vector y onto a subspace S. Then y− ŷ is orthogonal to
every vector in S.

Proof. Suppose that this is not the case. Then there is a nonzero vector v ∈ S such that (y−ŷ)Tv 6=
0. We will show that this contradicts the minimality of ‖y − ŷ‖. For any a ∈ R,

‖y − ŷ − av‖22 = (y − ŷ − av)T (y − ŷ − av)

= ‖y − ŷ‖22 − 2avT (y − ŷ) + a2‖v‖22.

This is a convex function in a. So setting the derivative to 0 gives the value of a that minimizes
the error:

∂

∂a
‖y − ŷ − av‖22 = −2vT (y − ŷ) + 2a‖v‖22 = 0⇒ a =

vT (y − ŷ)

‖v‖22
6= 0.

Let

ŷ′ = ŷ +
vT (y − ŷ)

vTv
v,

and note that ŷ′ is also in S but it is closer to y contradicting the optimality of ŷ.

4.2 Random vectors
A random vector is a vector of random variables. Consider the random vectors x and y

x =

x1
...
xm

, y =

y1...
yn

.
The expected value of x is

Ex =

Ex1
...

Exm

.
The correlation matrix of x and y is the m× n matrix E[xyT ], whose i, jth element is E[xiyj ].
The cross-covariance matrix of x and y is Cov(x,y) is the matrix E[(x − Ex)T (y − Ey)T ],
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whose i, jth element is Cov(xi, yj). The covariance of a vector x is Cov(x) = Cov(x,x). The
conditional expectation E[x|y] of x given y is a vector whose ith element is E[xi|y].

For matrices A,B, deterministic vectors a, b, and random vectors x,y,w, z, we have [1]

• E[Ax+ a] = AEx+ a

• Cov(x,y) = E[xyT ]− ExEyT

• E[(Ax)(By)T ] = AE[xyT ]BT

• Cov(Ax+ a, By + b) = ACov(x,y)BT

• Cov(Ax+ a) = ACov(x)AT

• Cov(w + x,y + z) = Cov(w,y) + Cov(w, z) + Cov(x,y) + Cov(x, z)

4.3 Gaussian Random Vectors (Joint Gaussian Distribution)
Recall that a random variable x is Gaussian (normal) with mean µ and variance σ2 > 0 if the pdf
of x is given by

p(x) =
1√

2πσ2
exp− (x− µ)2

2σ2
.

Definition 4.2. A collection of random variables is jointly Gaussian if any linear combination
of these variables is Gaussian. A Gaussian random vector, also known as a multivariate normal
vector, is a vector whose elements are jointly Gaussian. A collection of random vectors are jointly
Gaussian if the vector obtained by concatenating them is jointly Gaussian.

Example 4.3. For example if
(
x
y

)
is a Gaussian vector, then z = 2x+3y is Gaussian. Furthermore,

E[z] = 2E[x] + 3E[y],

Var(z) = Cov(2x+ 3y, 2x+ 3y) = 4 Cov(x, x) + 12 Cov(x, y) + 9 Cov(y, y)

= 4 Var(x) + 12 Cov(x, y) + 9 Var(y),

which completely characterizes the distribution of z. 4

For an m dimensional Gaussian vector x, the elements of x are independent if and only if the
covariance matrix is diagonal.

For anm-dimensional Gaussian random vector x, assuming that the covariance matrix K = Cov(x)
is invertible, we have

p(x) =
1

(2π)m/2|K|1/2
exp

(
−1

2
(x− µ)TK−1(x− µ)

)
.
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4.4 Maximum likelihood for Gaussian Random Vectors
Let z be a Gaussian random vector of dimension d with mean µ and covariance matrix K. If K is
invertible, the pdf of z can be written as

p(z|µ,K) =
1√

(2π)d|K|
exp

(
−1

2
(z − µ)TK−1(z − µ)

)
,

µ = E[z], K = E[(z − µ)(z − µ)T ],

where |K| is the determinant of K.

Given a set of n iid samples D = {z1, z2, . . . ,zn}, where each zi is a d-dimensional vector, how
can we estimate µ and K using maximum likelihood? Estimating these quantities allows us to find
the distribution. In particular, if we can view zd as the output variable and z1, . . . , zd−1 as input
variables, then we can estimate zd based on z1, . . . , zd−1 as E[zd|z1, . . . , zd−1].

To estimate µ and K, we write

`(µ,K) = ln p(D;µ,K) =

n∑
i=1

ln p(zi;µ,K)

.
=
n

2
ln |K−1| − 1

2

n∑
i=1

(zi − µ)TK−1(zi − µ),

where we have used the fact that |K−1| = 1
|K| .

As seen in the appendix (last chapter), for a symmetric matrix A, we have d
dv (yTAy) = 2yTAdy

dv .
Hence,

∂`

∂µ
= −1

2

n∑
i=1

2(zi − µ)TK−1(−I) =

n∑
i=1

(zi − µ)TK−1.

Setting this equal to zero yields

µ̂ML = z̄ =
1

n

n∑
i=1

zi.

Exercise 4.4. Using the facts

∂

∂A
xTAx = xxT ,

∂

∂A
ln |A| = A−T

prove that

K̂ML =
1

n

n∑
i=1

(zi − z̄)(zi − z̄)T
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