Chapter 1

Probability, Inference, and Learning

1.1 Introduction

In this chapter, we will study the role of probability in inference, codifying relationships, and
machine learning. When considering these problems, we deal with uncertainty, and that’s were
probability comes in. In other words, we are interested in probability because it allows us to model
uncertainty (or equivalently, belief and knowledge). Sources of uncertainty, for example in machine
learning, include:

e Noise: aggregate contribution of factors that we do not (wish to) consider (models focus on
the most important quantities).

e Finite sample size: finite size of data makes it impossible to determine relationships (i.e.,
probability distributions) as some configuration may never happen or happen few times in
finite data.

1.2 Relationships and joint probability distributions

Is there any relationship between the arrival times of two people working at a business (opening at
9:00 am), both living in the same area? If so, how can we represent this relationship? How can we
make prediction about one being late given the other is late (e.g., if we need at least one person be
present)?

In the same way that we can encode our information about a random quantity as a distribution, we
can encode information about random quantities, as well as their relationships, as joint distributions.

In our example, there’s obviously a relationship, that is, the arrival times are not independent. For
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example, both are affected by traffic. Let

Ty : normal traffic
Ti : heavy traffic
Ag : Alice is on time
Aq : Alice is late
By, B; for Bob

and assume

Pr(Tp) = 0.65,
r(Ao|Tp) = 0.9,
Pr(Bo|To) = 0.82,

r(Ao|Th) = 0.5,
Pr(Bo|T}) = 0.15.

g

g

Finally, conditioned on the traffic situation, Alice and Bob’s arrival times are independent. This
information completely determines all probabilities. As we will see in much grater depth later, the
fact that the Alice and Bob’s arrival times are only related through traffic can be shown graphically
as

Causal reasoning:

Pr(Ay) = Pr(Tp) Pr(Ao|Ty) + Pr(Ty) Pr(Ao|Ty) = (0.65 x 0.9) + (0.35 x 0.5) = 0.76
Pr(Bo) = Pr(Tp) Pr(Bo|Ty) + Pr(Ty) Pr(Bo|Ty) = (0.65 x 0.82) + (0.35 x 0.15) = 0.5855

Evidential reasoning (inverse probabilities, uses Bayes rule):

Pr(Ty|Ao) = Pr(Ao|To) Pr(Ty)/ Pr(Ag) = 0.65 x 0.9/0.76 = 0.7697
Pr(Ty|Bo) = Pr(Bo|To) Pr(Ty)/ Pr(By) = 0.65 x 0.82/0.5855 = 0.9103

The common cause makes the events A; and B; dependent. Recall that two events F; and Ej
are independent, denoted E; L Fs if Pr(E,Es) = Pr(Fy) Pr(Es), or, if Pr(E;) # 0, Pr(Ey|Ey) =
Pr(E;). We have

Pr(Ag|Bo) = Pr(A¢By)/ Pr(Bo)

Pr(AoBy) = (0.65 x 0.82 x 0.9) + (0.35 x 0.15 x 0.5) = 0.506
Pr(Ag|Bo) = 0.506/0.586 = 0.863  Pr(Ao)

Pr(By|Ag) = 0.506/0.76 = 0.6658 # Pr(By)
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So Ay L Bo.

However, they are conditionally independent, by assumption

PI‘(A()B()|T()) = PI(A0|T0) Pl“(.B()|T0)7

which is denoted as Ag L By|Tp.

What is the source of uncertainty in this problem? Since we have assumed the distribution is
known, finite sample size is not an issue. The source is noise. For example, if we had information
about other factors affecting Bob, e.g., how reliable his car is, if he needs to drop off his kids, etc.,
we could reduce the amount of noise and make better predictions.

1.3 Inference and decision making

Let us consider a problem about inferring unknown values and making decisions and use prob-
ability to solve it, using both frequentist and Bayesian views. Suppose that the probability that
someone with a given allele of a gene will develop a certain disease is # and we are interested to
know if # > 0.01, where 0.01 is the fraction of people in the general population with that disease.
Different interpretations lead to different approaches to problems. But to decide, both frequentists
and Bayesians need data.

Data (D): Among a sample of 100 people with this allele, 2 had the disease.

e A Frequentist thinks of # as unknown non-random parameter. She devises statistical tests to
decide if # > 0.01. Clearly, 2 out of 100 is larger than would be expected by chance. So this
may be because the allele and the disease are related. On the other hand, maybe the allele
doesn’t have anything to do with the disease, but we have been unlucky enough to pick two
people with the disease. So how do we decide?

Our statistician may consider how likely it is to see similar or stronger evidence by chance.
This probability is called the p-value.

If the probability of the disease is 0.01, what is the probability of seeing 2 or more sick people
in a sample of size 1007

100 100
p=1-— (( 0 )0.99100 + < . >0.99990.011> =1-0.37—-0.37 = 0.26 > 0.05

The smaller the p-value, the stronger the evidence. Typically, if the p-value is smaller than
0.05, we believe the evidence is strong enough to reject the hypothesis that the observation
has occurred by chance.

e A Bayesian thinks of # as random and assigns to it a distribution, called the prior, before
seeing the data. She then looks at the data and updates her distribution for 6, thus obtaining
the posterior distribution. (We’ll learn more about Bayesian methods.)

Assume that before seeing the data, we believe that the distribution for 6 is uniform, i.e.,
p(0) ~ Uni[0, 1] = Beta(1,1). This means that while we do not know what 6 is, we believe it
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is equally likely to be any value between 0 and 1. When we see the data, we can update this

belief,
p(DI0)p(6)

pop) = P

(Bayes’ rule)

It turns out p(0|D) ~ Beta(3,99), and, as we will see,
p(6 > 0.01|D) = 0.92.
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What is the source of uncertainty in this case? Why can’t we say for certain if ¢ > 0.01? This is
because of the finite sample size. If we know the status of a very large number of people with the
allele, we would know the distribution/ the value of 6.
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1.4 Machine Learning and Probability

Let us consider the generic form of supervised machine learning problems, which have the following
components:

e Data: D = {(x1,¥1), s (@n,Yn)},x; € X,y; € V. X is called the feature space, and Y is
called the label space. As an example, each x; could be a vector providing information about
a house, e.g., (location, lot size, square footage, number of bedrooms, ... ), and y can be the
sale price of the house.

e Assumption: (z;,y;) are iid samples of random variables X and Y. The joint distribution
(X,Y) is (partially) unknown.

e Goal: Find the “best” function f to predict y corresponding to a given x. In other words,
the function f produces an estimate § = f(z) of y given data x. Continuing our example,
y would be the true but unknown price of the house with features x, and f(x) would be a
prediction (similar to what Zillow does).

e Evaluation: How do we define “best”? For a given data point (x,y), evaluate the success
of f using a loss function L(y, f(z)), e.g., L(y, f(z)) = |y — f(x)]. Ideally, we would like to
minimize the expected loss over all possible outcomes weighted by their probabilities, so we

define
L(f) = E[L(Y, f(X)], (L.1)
where the expectation is over the distribution p(z, y) of (X,Y"). Our goal then becomes finding
1 :argmfinﬁ(f) = argmfinE[L(Y,f(X)]. (1.2)

e Learning Algorithm: The algorithm that finds f*, or tries to.

You may have noticed that D counsists of samples from p(x,y), but in (1.2), we need the joint distri-
bution of X,Y. We can address this in two ways, either through the Empirical Risk Minimization
framework discussed in §1.4.1, or through estimating the unknown distribution using D as discussed
in §1.4.2.

Before proceeding further, let us consider two common problems in supervised learning:

e Regression: ) consists of scalars or vectors of reals. For example, predicting stock price
based on financial information, or determining the score someone will assign a movie based on
previous scores. A common loss function is the quadratic or squared error loss function:

L(y, f(x)) = (y — f())*. (1.3)
For this choice, if the distribution is known, it can be shown that
§=f(z) =E[Y[X = z]. (1.4)

e Classification: ) consists of classes or categories. For example, speech recognition, hand
writing recognition, the presence or absence of a disease. A common loss function is the 0-1
loss:

1, ify# f(z).

0, ify=f(x). (15)

L(y, f(x)) = {
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In this case, if the distribution is known, then the best classifier is § = argmax,cy p(y|z).

1.4.1 Empirical Risk Minimization (ERM)

Since we usually do not know the distribution but have access to data D = {(x1,41),. -, (Tn,yn)}s
we cannot directly minimize the expected loss as in (1.2). Instead we can minimize the loss on
observed data points,

= argm}n]E[L(Y, f(xX) - f= argmfin % iL(yi, f(zi)). (1.6)

This is, however, problematic, as it only provides a way for us to determine the value of f(z) for
x € {x1,...,2,}. In other words, it is not able to extrapolate or generalize. A common solution,
which is also helpful from a practical point of view, is to restrict the choices for f to a set, called
the hypothesis set. This leads to the ERM formulation of the learning problem

fr= arggcrggi;fl(yi,f(wi)) (1.7)

For example, we may choose F to be the set of linear or sigmoid functions.

The choice of F is critical to how well the predictor generalizes. On the one hand, it needs to be
large enough to be able to produce a small loss. As an extreme example, setting F to contain only
f(z) = 0 for all z is not a good choice. On the other hand, if 7 has too many degrees of freedom, we
may get a predictor f that is tuned well to the dataset but does not generalize well, i.e., performs
poorly for examples outside of the dataset. This is called overfitting. We check whether this is the
case by setting aside part of the data, referred to as the test set, which is used only for evaluating
performance but not for training. Data used for training is called the training set. (If we need to
choose between different algorithms or tune hyper-parameters, we may further divide the training
set to training and validation sets.)

1.4.2 Density estimation

As discussed, density estimation is another way to use data for prediction. Here we discuss only
parametric density estimation, where we can (or choose to) represent the joint distribution of (X,Y")
using a probabilistic model with some unknown parameters, for example, a graphical model with
known structure and unknown parameters.

Let us consider maximum likelihood, which is one method for parameter estimation. Suppose the
distribution has a set of unknown parameters # and we represent the distribution as Py. So what
should we choose as the value of 87 If an outcome has a small probability, the chance it appears in
our dataset D is small. So those outcomes observed in D must have large probability. Hence, we
must choose 6 such that the probability assigned to D is large, that is,

0 = arg max Py(D)

n
= argmGaXHPQ(Iivyi)

i=1

Farzad Farnoud 6 University of Virginia



ESL Chapter 1. Probability, Inference, and Learning

Alternatively, we can formulate the problem as density estimation with maximum-likelihood loss
to begin with. From the following equation, loss is minimized when log-likelihood is maximized.

L(Pg(ﬂj,y)) = —log P9(1‘7y)
£(6) = — E(log (Py(X, V)

Again, before determining 0, we do not know the distribution and cannot evaluate the expected
loss. So we minimize the empirical risk:

L) =— Zlog Py(xi,y:)
i=1
0 = arg min L(6),

where O is the set of all valid parameters.

1.4.3 Decomposition of error for mean squared error

In (1.4), we claimed that for mean squared error and known joint distribution, the best predictor
for Y given X = z is E[Y|X = z]. We start by proving this claim. First, let us consider: What
is the best predictor for a (random) quantity Y when we know the distribution of ¥ but have no
other information. Since we have no information, this predictor is a single constant value ¢ and for
the mean squared error we have

E[(Y = ¢ =E[(Y = p+p—c)?
= Var(Y) + 2E[Y — g (= ¢) + (1 — ¢)°
= Var(Y) + (4 — )%,

where p = E[Y]. This is minimized by letting ¢ = p = E[Y].

Now let us consider the original problem: What is the best predictor f(x) for Y if we know X =z
as well as the joint distribution of (X,Y)? Let §(z) = E[Y|X = z]. For the mean squared error for
a given value of x, we have

E[(Y = f(@)*X = 2] = E[(Y = y(@) + 5(x) - f())*|X = 2]

=E
= E[(Y = §@)|X = 2| +2E[Y - 5(2)|X = 2](5(x) — f@)) + (3(x) - f(2))?
—E[(Y - g(@)|X = 2] + (5(2) - f(@))".

Note that the error has two parts: an irreducible part, referred to as intrinsic error, which is not
under our control, and a part that depends on the choice of the predictor. The intrinsic error results
from the noise in our model and not lack of enough data. The reducible part, and thus the error, is
minimized by setting f(x) = y(z) = E[Y|X = z]. However, doing so exactly is only possible if we
have the distribution or an infinite amount of data. When f is determined based on a finite sample
D, the term (y(z) — f(x))? can be decomposed into bias and variance components, which we will
discuss later.

Farzad Farnoud 7 University of Virginia



ESL Chapter 1. Probability, Inference, and Learning

1.5 Quantifying uncertainty

Suppose we know the distribution for a random variable. How do we measure how uncertain we are?
Alternatively how much information will we gain when we find out the outcome or how surprised
will we be when we see the outcome?

First, we observe that the lower the probability of a statement, the higher the surprise/information
content:

e The sun will rise tomorrow: Very likely, low information content
e It’s raining in Seattle: Even chances, provides some information
e It’s raining in the Sahara: Very unlikely, high information content

So we look for a function that decreases as the probability p of the event increases. It turns out a
good choice is I(p) = log %, which is called the self-information function and shown in Figure 1.1
when the base of the log is 2. Then the information content of the statement ‘X = z;’ is

1
pzi)

1(p(zi)) = log

And the amount of information on average is

H(X)= E{log p(lX)} = Zp(a:z) log@

This is called the entropy. If the log is base 2, then the unit is a bit.

If there are m different possible outcomes, then the maximum value that entropy can take is logm.
So
0 < H(X) < logm.

An important special case is the binary entropy function Hy(p) = plog% + (1 = p) logﬁ for
experiments with two outcomes with probabilities p and 1 — p. For example,

1 1 1
H (Fair coin) = Hb(i) =3 log2 + 3 log2 =1,
H(Sun coming up or not) = H,(27 %) = 275 10g 204 + (1 — 27%) log T 96t
~ 65 x 2704 = 2758

The plot for binary entropy is given in Figure 1.1. The maximum entropy is 1 bit. This makes
sense since we can represent the outcome with 1 bit.

Entropy was introduced by Shannon in his article “A mathematical theory of communication” in
1948. It is also the minimum amount of “bandwidth” you need to transmit the outcome of the
experiment. He also popularized the term bit (Binary digit).
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Figure 1.1: Self-information (left) for an event with probability p and binary entropy (right) for a
Bernoulli RV with probability of success equal to p.

“My greatest concern was what to call it. I thought of calling it ‘information,” but the word was
overly used, so I decided to call it ‘uncertainty.” When I discussed it with John von Neumann,
he had a better idea. Von Neumann told me, ‘You should call it entropy, for two reasons. In the
first place your uncertainty function has been used in statistical mechanics under that name, so it
already has a name. In the second place, and more important, no one really knows what entropy
really is, so in a debate you will always have the advantage.” — Claude Shannon, Scientific American
(1971), volume 225, page 180.

1.6 Conditional entropy*

We can measure the information in multiple random variables also using entropy. The information
in both X and Y is denoted H(X,Y") and is defined as

H(X,Y) zE{logp(le] = Z Zp(:t,y)log ! .

s et p(z,y)

If we know Y, how much information is left in X? This is denoted H(X|Y). If, for example
X =Y 42, then H(X|Y) = 0 since if we know Y, we also know X. Conditional entropy is defined
as

H(X|Y) =Y p)H(X|Y =y) = E[log p(X]Y)

] = H(X,Y)—H(Y)
yey

Mutual information, I(X;Y"), represents the amount of information that one random variable has
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about the other, and is defined as
I(X;Y)=HX)-HX|Y)=H(Y) - H(Y|X).
Finally, relative entropy between two distributions p and ¢ is defined as

KL(llg) = 3 pla)log 22,
zeX q(x)

which can be viewed as a measure of difference between distributions.

While this quick overview is sufficient for our purposes in this course, if you are interested, you can
check out the slides for this Short Lecture on Information Theory, or the course Mathematics of
Information.
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