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Chapter 0

Review of Probability

In this chapter, we will review some concepts from probability theory and linear algebra that will be useful
in the rest of the course.

This review is not comprehensive. You can refer to the course webpage for more resources.

0.1 What is probability?
Intuitively, probability is a way of systematically studying events whose outcomes are uncertain. It enables
us to quantify information and uncertainty (e.g., the probability of rolling a 6 is 1/6 or the probability of
rain on grounds at 10 am tomorrow is 20%). It can be used to describe relationships and provides ways to
transfer our knowledge about one random quantity to another.

From a mathematical point of view, probability deals with sets, and functions that assign real values to those
sets, in a way that certain axioms are satisfied. In this sense, probability is similar to geometry, number
theory, etc. It can be used to model the real world, but it can also be studied as an abstract subject.

0.1.1 Definitions:
Assuming an experiment with different possible outcomes, consider the following definitions.1

• Ω: the sample space, the set of all possibilities (outcomes)

• E ⊆ Ω: an event, i.e., a set of outcomes

• Pr : A function from subsets of Ω to R. Pr(E) is the probability of the event E.

0.1.2 Axioms:
• Pr(E) ≥ 0 for all E ⊆ Ω.

• Pr(Ω) = 1

• Pr(E1 ∪ E2) = Pr(E1) + Pr(E2) if E1 ∩ E2 = ∅.

Based on these axioms, many theorems and other results can be proven. For A,B ⊆ Ω:

• If A ⊆ B, then Pr(A) ≤ Pr(B).

• Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B).

More definitions for basic concepts:
1These definitions and the following axioms are simplified. We cannot always assign probability to all subsets of Ω. Also, for

the third axiom, for any countable sequence of mutually exclusive events E1, E2, . . . , we require that Pr(
⋃∞

i=1) =
∑∞

i=1 Pr(Ei).

6
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• Two events A and B are independent, denoted A ⊥⊥ B, if Pr(A ∩B) = Pr(A) Pr(B).

• If Pr(B) ̸= 0, the conditional probability of A given B is defined as

Pr(A|B) =
Pr(A ∩B)

Pr(B)
.

• Random variables, distributions, expected value, ...

What these theorems and definitions ‘mean’ depends on what we think probability means.

0.1.3 Interpretations of probability

Probability is the most important concept in
modern science, especially as nobody has the
slightest notion what it means.

Bertrand Russell

How do we assign probability to events? What does it mean, for example, to say that Pr(E) = 1/3?

• Classical interpretation: If there are K possible outcomes, and we have no reason for some outcomes
to be more likely than others, the probability of each outcome is 1/K.

– Probability of rolling a 3 is 1/6.

– Probability of heads is 1/2 when tossing a fair coin.

• Frequentist interpretation: Assume that there is a “random” experiment that can be repeated many
times. If we repeat it N times and N is very large, then the number of times that the event E occurs
is approximately N Pr(E). In other words, the “frequency” of E occurring is Pr(E).

– Probability of heads for a given coin is Pr(H) = 1/3. So if we toss it 3000 times, we should see
heads around 1000 times.

– Probability distribution of the number N of children (≤ 18) of a randomly chosen American
household:

Pr(N = 0) Pr(N = 1) Pr(N = 2) Pr(N ≥ 3)

1970 0.442 0.182 0.174 0.203
2008 0.541 0.195 0.169 0.095

• Bayesian interpretation: probability indicates the degree of belief in a way that is consistent with the
axioms. This allows us to consider events that are, strictly-speaking, not random.

– Pr(Heads) = 1/2 (both Bayesian and frequentist)

– Pr(Stock market will hit a certain threshold this year)

– Pr(Nuclear war this century)

– Pr(A certain person is guilty of a given crime)

The classical interpretation is sometimes criticized as being circular. We call a coin fair if Pr(H) = Pr(T ) =
1/2 and we say Pr(H) = 1/2 if the coin is fair. Nevertheless, the definition is relied upon in practice,
e.g., in games of chance. The frequentist definition can be criticized for being vague. What do “large” and
“approximately” mean? How large is large enough? And how close should two values be for us to call
them approximately equal? The Bayesian interpretation is criticized for being subjective and for assigning
probabilities to experiments that happen only once (so any given event either happens or does not happen).

Criticism of interpretations of probability does not create any mathematical problems. Mathematically, we
only need to assign probabilities in a way that the axioms are satisfied. Different interpretations however
lead to different approaches to problems, potentially leading to different real-world decisions.

Farzad Farnoud 7 University of Virginia
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0.2 Sets and their sizes
Finding the probability of an event is easiest when all outcomes are equally likely. In such cases, if we can
measure the size of the set A of desirable outcomes, dividing that by the size of the sample space, will yield
the probability,

Pr(A) =
|A|
|Ω| ,

where |A| denotes the size of the set A.

Definition 0.1. A set A is finite if there is a natural number n such that the number of elements in A is
less than n. Otherwise, it is infinite. If the elements of A can be counted, i.e., there is a one-to-one function
from A to natural numbers, then A is countable. Otherwise, it is uncountable. A countable set may be
finite (e.g., {1, 5, 6}) or infinite (e.g., integers, prime numbers, rational numbers).

If A is finite, we define its size (aka, cardinality) as the number of elements. This requires us to be able to
count:

• Sum rule: If an action can be performed in m ways and another action can be performed in n ways,
and further if we can choose which action to perform, in total we have m+ n options.

• Product rule: If the first action can be performed in m ways and the second action can be performed
in n ways, and further if we must perform both actions in order, in total we have m× n options.

• Permutations: The number of ways we can arrange n objects is n! = 1× 2× · · · × n.

• Combinations: The number of ways we can choose k objects from a set of n objects is(
n

k

)
=

n!

k!(n− k)! .

Exercise 0.2. †2 Prove that
(
n
x

)
x = n

(
n−1
x−1

)
. △

Exercise 0.3. How many 8-bit bytes are there? How many of these have exactly 3 ones? If we pick a random
byte, what is the probability that it has exactly 3 ones (binomial distribution)? What is the probability that
it has 6 or more consecutive ones? △

Exercise 0.4. How many binary sequences of length n that end with one are there with exactly k ones? △

If the sample space has an infinite, even uncountable, number of outcomes, we may still be able to think of
the outcomes as equally likely. For example, if we pick a random number between 0 and 1, we may assume
all outcomes are equally likely. In such cases, the size of the set can be measured via length, area, volume,
etc.

Exercise 0.5. A random number in the interval [0, 1] is chosen. What is the probability that it is more
than 1/2 but less than 2/3? What is the probability that it is equal to 1/2? What is the probability that it
is rational (optional)? △

Exercise 0.6. A random point is chosen in a square of unit side. What is the probability that it is inside
the circle of diameter one inscribed in the square? What is the probability that it is on the circle? △

0.3 Random variables and distributions
A random variable (RV) is a function that assigns real values to outcomes in Ω. In most cases, there is
a very natural mapping. For example, let X denote the number showing on a dice. Now X is a random
variable, mapping each outcome of the form “the dice shows i” to the real number i. For this reason, the

2This symbol indicates that the exercise, section, etc., is optional.
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fact that random variables are really functions is often overlooked. Information about the probabilities of
different outcomes is given by the distribution of the random variable.

A random variable is discrete if there are a countable number of possibilities (could be infinite but countable,
like natural numbers). They can also be continuous (uncountable number of outcomes, defined over the
real line or some subset of some Euclidean space).

For example, a random variable that is 1 if heads shows when a given coin is filliped and is 0 otherwise is
discrete and finite; the number of phone calls made in a given hour is discrete and infinite; the arrival time
of a plane from midnight is continuous.

0.3.1 Discrete distributions
The distribution of a discrete random variable X is given by its probability mass function (pmf) denoted
by pX(x), where

pX(x) = Pr(X = x).

Clearly, pX(x) ≥ 0 for all x and ∑
x

pX(x) = 1. (0.1)

If clear from the context, we drop the X in the subscript.

Example 0.7 (Poisson Distribution). An RV X has the Poisson distribution with parameter λ if

p(x) =
λxe−λ

x!
, x ∈ {0, 1, . . . }.

The number of times an event, e.g., phone calls or car accidents, occurs in a given interval of time is often
assumed to have a Poisson distribution (with good reason). △

Exercise 0.8. A red die and a blue die are rolled. Let X denote the number showing on the red die and Y
denote the sum of the two dice. Find the pmf of X and the pmf of Y . △

Exercise 0.9. Two cards are drawn at random from a standard deck of 52 cards and let Z denote the
number of Aces drawn. Find the pmf of Z. △

0.3.2 Continuous distributions
The distribution of a continuous random variable X is given by its probability distribution function
(pdf) pX(x), also sometimes denoted fX(x). Roughly speaking,

Pr

(
x− dt

2
≤ X ≤ x+

dt

2

)
= pX(x)dt.

For two real numbers a, b,

Pr(a ≤ X ≤ b) =
ˆ b

a

pX(x)dx.

For any pdf, we have pX(x) ≥ 0 and ˆ ∞

−∞
pX(x)dx = 1.

Exercise 0.10 (Exponential distribution). An exponential random variable X with parameter λ has
distribution

f(x) = λe−λx, x ≥ 0.
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For λ = 1, the probability that X is between 1 and 1.1 is around e−1 × 0.1 = 0.37 × 0.1 = 0.037. In the
figure below, the area colored red represents this probability.
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△

0.3.3 Cumulative distribution functions
Cumulative distribution functions (CDFs) are defined for both discrete and continuous RVs as FX(x) =
pX(X ≤ x) and can be found via summation or integration:

FX(x) =
∑
k≤x

pX(k)

FX(x) =

ˆ x

−∞
pX(t)dt

Example 0.11. The CDF of the exponential RV in Example 0.10 with λ = 2 is given by

FX(x) =

ˆ x

−∞
λe−λtdt = 1− e−λx
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△

0.3.4 Expected value
The expected value or the mean E[X] of a random variable X with distribution p(x) is given by

E[X] =
∑
x

xp(x),

E[X] =

ˆ ∞

−∞
xp(x)dx.

One way to think about the expected value is as the average of a large number of experiments. For example,
if a game pays out $X each time you play with probability distribution p(x), if you play the game many
times, on average you will win $E[X] per game. That is if you play n times, each time winning $xn, and n
is large, then

1

n
(x1 + x2 + ...+ xn) ≃ E[X].

Exercise 0.12. Find the expected value of the discrete and continuous RVs in the examples above. △

Exercise 0.13. Find E[1]. △

0.3.4.1 Expectation of functions of random variables

For an RV X and a function f(x) it follows from the definition that

E[f(X)] =
∑
x

f(x)p(x),

E[f(X)] =

ˆ ∞

−∞
f(x)p(x)dx.

(0.2)

Exercise 0.14. A random variable X has distribution

pX(−1) = 0.1, pX(0) = 0.2, pX(1) = 0.3, pX(2) = 0.4.

Find EX. Let Y = X2. Find EY , both by finding the distribution of Y and by using (0.2). △

0.3.4.2 Linearity of expectation

For a RV X, functions f(x) and g(x), and real numbers a and b,

E[af(X) + bg(X)] = aE[f(X)] + bE[g(X)],

which can be proven easily from the definition of expectation.

Example 0.15. E[(X − a)2] = E[X2 − 2aX + a2] = E[X2]− 2aEX + a2. △

Consider a collection of random variables X1, X2, . . . , Xn. By the linearity of expectation

E

[
n∑

i=1

Xi

]
=

n∑
i=1

EXi. (0.3)
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If all variables are identically distributed, then

E

[
n∑

i=1

Xi

]
= nEX1. (0.4)

Example 0.16. In a class of n students, what is the expected number of pairs of students who have the
same birthday? To find this, for two students i and j, let Xij be equal to 1 if they share a birthday and 0
otherwise and let X =

∑n−1
i=1

∑n
j=i+1Xij . Now,

EX =

(
n

2

)
EX12 =

(
n

2

)
Pr(X12 = 1) =

(
n

2

)
1

365
≃ n2

730
. (0.5)

In particular, having n =
√
730 ≃ 27 students in a class is enough to have on average one pair with the same

birthday. With n = 60 and n = 85 students, there should be around 5 and 10 such pairs, respectively. △

0.3.4.3 Variance

Suppose someone offers you a game in which your expected winning is $100. Will you accept? Which game
would you play?

• You always win exactly $100.

• You win $0 with probability 1/2 and $200 with probability 1/2.

• You win $1200 with probability 1/2 and lose $1000 with probability 1/2.

All three have the same mean. So what’s different between them?

The mean helps us represent a distribution with one value, which describes the average behavior of the RV.
But as this example shows, the behavior around the mean is also important. Denoting the mean of X by
µX , the variability around the mean is captured to a degree by the variance Var[X],

Var[X] = E[(X − µX)2].

The variance gives a sense of how far X is from its mean µX , on average. The standard deviation, σX ,
is defined as

σX =
√

Var[X],

and the variance is usually denoted as σ2
X .

Exercise 0.17. Prove that
Var[X] = EX2 − (EX)2.

△

Exercise 0.18. Find the mean and variance of each of the following RVs [1]:

• X + c

• aX

• aX + c

• X−µX

σX
(called the standardized version of X)

△
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0.3.5 Common distributions
We denote X having distribution ‘Dist’ by X ∼ Dist(a, b, . . . ), where a, b, . . . , are the parameters of the
distribution.

0.3.5.1 Discrete distributions

• X ∼ Ber(p) : Pr(X = 1) = p, Pr(X = 0) = 1− p, E[X] = p, Var[X] = p(1− p).
• X ∼ Bin(n, p) : 3 p(x) =

(
n
x

)
px(1− p)n−x, 0 ≤ x ≤ n, E[X] = np, Var[X] = np(1− p).

• X ∼ Geo(p) : p(x) = (1− p)x−1p, x ≥ 1, E[X] = 1/p, Var[X] = (1/p)2 − (1/p).

• X ∼ NegBin(k, p) : p(x) =
(
x−1
k−1

)
(1− p)x−kpk, x ≥ k, E[X] = k/p, Var[X] = k[(1/p)2 − (1/p)].

• X ∼ Poi(λ) : p(x) = λxe−λ

x! , x ≥ 0, E[X] = λ, Var[X] = λ.

• X ∼ Uni[a, b] : p(x) = 1
b−a+1 , x ∈ Z, a ≤ x ≤ b, E[X] = a+b

2 , Var[X] = (b−a+1)2−1
12 .

Exercise 0.19. Prove that the mean of Bin(n, p) is as given using Exercise 0.2. △

0.3.5.2 Continuous distributions

• X ∼ Uni(a, b) : p(x) = 1
b−a , x ∈ (a, b), E[X] = a+b

2 , Var[X] = (b−a)2

12 .

• X ∼ N (µ, σ2) : p(x) = 1√
2πσ2

exp(− (x−µ)2

2σ2 ), x ∈ R, E[X] = µ, Var[X] = σ2.

• X ∼ Exp(λ) : p(x) = λe−λx, x ≥ 0, E[X] = 1/λ, Var[X] = 1/λ
2
.

Sometimes, we drop the normalization constant, that is, the constant by which we divide to ensure that the
distribution integrates to 1. This could be because the constant is not important (e.g., in Bayesian inference)
or because it is hard to determine. In such cases, we use ∝ to show proportionality rather than equality. We
should be careful which of the entities appearing is the variable. For example, viewed as a function of x, we
have f(x) = λxe−λ

x! ∝ λx

x! and as a function of λ, we have g(λ) = λxe−λ

x! ∝ λxe−λ.

• X ∼ Beta(α, β) : p(x) ∝ xα−1(1− x)β−1, 0 ≤ x ≤ 1, E[X] = α
α+β , Var[X] = αβ

(α+β)2(α+β+1) .

• X ∼ Gamma(α, β) : p(x) ∝ xα−1e−βx, x > 0, E[X] = α
β , Var[X] = α

β2 .

Example 0.20. For the distributions given in this section, try changing what the variable is and what
the parameters are and check whether another distribution from the list can be obtained with appropriate
normalization. For example, Bin(n, p) viewed as a distribution in p turns into Beta(x+ 1, n− x+ 1). △

0.4 Joint probability distributions
Joint probability distributions allow us to encode information about relationships between quantities, from
independence to strong correlation.

For random variables X and Y , the CDF and the pmf/pdf give their joint distribution, depending on their
3Note that sometimes p is used both as a parameter and as the distribution. The meaning should be clear from the context.
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type,

FX,Y (x, y) = Pr(X ≤ x, Y ≤ y), CDF for continuous and discrete
pX,Y (x, y) = Pr(X = x, Y = y), pmf for discrete

pX,Y (x, y)dxdy ≃ Pr

(
x− dx

2
≤ X ≤ x+

dx

2
, y − dy

2
≤ Y ≤ y + dy

2

)
, pdf for continuous

We can find the distribution for each random variable (in this context these are called the marginals) by
integration/summation,

pX(x) =
∑
y

pX,Y (x, y), pX(x) =

ˆ ∞

−∞
pX,Y (x, y)dy.

0.4.1 Expectation, correlation, and covariance
Given two or more RVs, we may be interested in finding the expected value of a function of these RVs, e.g.,
E[XY ]. In such case, similar to (0.2), we have

E[f(X,Y )] =

ˆ ∞

−∞

ˆ ∞

−∞
f(x, y)p(x, y)dxdy, (0.6)

and similarly for discrete variables.

The correlation between X and Y is E[XY ] =
´ ´

xyp(x, y)dxdy. The covariance Cov(X,Y ) and the
correlation coefficient ρX,Y are defined as

Cov(X,Y ) = E[(X − µX)(Y − µY )]

ρX,Y =
Cov(X,Y )

σXσY
.

It can be shown that −1 ≤ ρX,Y ≤ 1. If ρ = 0, then the random variables are uncorrelated.

What does the correlation coefficient mean? Let X and Y be random variables, for example, weight and
height of a person chosen at random. Suppose that we want to predict the value of Y given X but we are
restricted to linear functions of X. Then, in a certain sense,4 the best predictor Ŷ of Y is

Ŷ = EY + ρ
σY
σX

(X − EX),

with the “error” being
σ2
Y

(
1− ρ2

)
.

In particular, if X and Y are standardized, Ŷ = ρX with error 1− ρ2.

Exercise 0.21. If |ρ| is close to 1, the RVs are said to be strongly correlated. Why? △

Exercise 0.22. Show that Cov(X,Y ) = E[XY ]− EX EY . △

Example 0.23. The bivariate jointly Gaussian distribution for X,Y with means µX and µY , variances σX
and σY , and correlation coefficient ρ is given as

p(x, y) =
1

2πσxσy
√

1− ρ2
e
− 1

2(1−ρ2)

[
(x−µX )2

σ2
X

+
(y−µY )2

σ2
Y

− 2ρ(x−µX )(y−µY )

σXσY

]
.

Examples of this pdf are given in Figure 1. △
4Minimizing the Mean Square Error
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Figure 1: Bivariate Normal pdfs with µX = µY = 0, σX = σY = 1, with ρ = 0 (uncorrelated), ρ = .5
(positively correlated), and ρ = −.5 (negatively correlated), respectively.
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Exercise 0.24. For random variables X,Y, Z and constants a, b, c, d, e, prove that

• Var(X) = Cov(X,X)

• Cov(X + Y,Z) = Cov(X,Z) + Cov(Y,Z)

• Cov(aX, Y ) = aCov(X,Y )

• Cov(X, b) = 0

• Cov(aX + bY + c, dZ + e) = adCov(X,Z) + bdCov(Y,Z)

△

Exercise 0.25. Find the expected values and variances of X and Y from Exercise 0.8. Find Cov(X,Y ). △

0.4.2 Independence
Recall that two events A and B are independent iff (if and only if) Pr(A ∩B) = Pr(A) Pr(B). Two random
variables X and Y are independent if {X ∈ S1} and {Y ∈ S2} are independent for all sets S1 and S2. This
implies that

p(x, y) = p(x)p(y). (0.7)

For two independent random variables, we have

E[XY ] = E[X]E[Y ] (0.8)

and Cov(X,Y ) = 0.

Exercise 0.26. Prove (0.8) using (0.7). △

Exercise 0.27. For two independent RVs X and Y , find Var[X + Y ] and E[(X − Y )2 + 3XY + 5] in terms
of means and variances of X and Y . △

A collection X1, . . . , Xn of random variables that are independent from each other but have the same distri-
bution are called independent and identically distributed (iid). We have

p(x1, . . . , xn) =

n∏
i=1

p(xi). (0.9)

Exercise 0.28. For iid RVs X1, . . . , Xn, let Sn =
∑n

i=1Xi. Show that

Var(Sn) =

n∑
i=1

Var(Xi). (0.10)

△

Exercise 0.29. For iid RVs X1, . . . , Xn, suppose E[Xi] = µ and Var[Xi] = σ2, and let X̄ be their average.
Show that

E[X̄] = µ, Var[X̄] =
σ2

n
. (0.11)

△
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0.4.3 Conditional probability and conditional distributions
For two discrete variables X and Y , the conditional probability distribution of Y given X is given by

pY |X(y|x) = Pr(Y = y|X = x) =
Pr(Y = y,X = x)

Pr(X = x)
=
pX,Y (x, y)

pX(x)
.

For continuous RVs, we also have pY |X(y|x) = pX,Y (x,y)
pX(x) . In this case, however, we interpret the conditional

density as

pY |X(y|x) ≃ Pr(y − ϵ/2 ≤ Y ≤ y + ϵ/2|x− ϵ/2 ≤ X ≤ x+ ϵ/2)

ϵ
,

for small positive ϵ. This essentially says to find pY |X(y|x), we first assume that X is in a narrow strip
around x and then find the density for Y given this assumption.

Law of total probability. Let A1, A2, . . . , An be a partition of the sample space. That is, ∪ni=1Ai = Ω
and for all i ̸= j, we have Ai ∩Aj = ∅. For an event Bi, we have

Pr(B) =

n∑
i=1

Pr(B ∩Ai) =

n∑
i=1

Pr(B|Ai) Pr(Ai).

In particular, if X can take on {1, 2, . . . , n}, then for another RV Y,

pY (y) =

n∑
x=1

pY |X(y|x)pX(x).

Chain rule of probability. For events A1, . . . , An, we have

Pr(A1 ∩A2 ∩ · · · ∩An) = Pr(A1) Pr(A2|A1) Pr(A3|A1, A2) · · ·Pr(An|A1, . . . , An−1),

which can be easily proven by induction. A similar rule holds for random variables X1, . . . , Xn:

p(x1, . . . , xn) = p(x1)p(x2|x1)p(x3|x1, x2) . . . p(xn|x1, . . . , xn−1).

Conditional expectations are defined based on conditional distributions, e.g.,

E[X|Y = y] =
∑
x

xpX|Y (x|y).

Exercise 0.30. Suppose the joint pmf is given as

pX,Y (x, y) x = 0 x = 1
y = 0 0.25 0
y = 1 0.5 0.25

Find p(y|x), p(x|y), E[Y |X = 0], E[Y |X = 1], E[X|Y = 0], E[X|Y = 1]. △

Exercise 0.31. A point is chosen uniformly at random in a triangle with vertices on (0, 0), (1, 0), (1, 1).
Let X and Y determine the x and y coordinates of the chosen point. Find p(x|y), p(y|x), E[X|Y = y],
E[Y |X = x]. △

0.4.3.1 Law of iterated expectations.

Consider a random variable X and a function g(x). We can now obtain g(X) by replacing the deterministic
value for x with a random one. Note that g(X) is a random variable. For example, if X ∼ Uni(−1, 1) and
g(x) = |x|, then g(X) is a random variable with distribution Uni(0, 1).
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Now let g(x) = E[Y |X = x]. This is, of course, a well-defined function. We define E[Y |X] = g(X), which is
as discussed a random variable. Now that we have a random variable, we can compute its expectation, i.e.,
E[E[Y |X]].

Exercise 0.32. A die is rolled, showing X. A coin is then flipped X times resulting in Y heads. Find E[Y ],
E[Y |X = x], the pmf of E[Y |X], and E[E[Y |X]]. △

It can be shown that

E[E[Y |X]] = E[Y ], E[E[Y |X,Z]|Z] = E[Y |Z]. (0.12)

0.4.4 Bayes’ rule
In Exercise 0.32, the conditional distribution p(y|x) is readily available as

p(y|x) =
(
x

y

)
2−x.

But what if we are interested in p(x|y)? Since p(x|y) = p(x,y)
p(y) and p(x, y) = p(y|x)p(x), we have

p(x|y) = p(y|x)p(x)
p(y)

=
p(y|x)p(x)∑
x′ p(y|x′)p(x′)

,

which is called the Bayes rule.

Example 0.33. In Exercise 0.32, we can use the Bayes rule to find p(x|y),

p(x|y) =
(
x
y

)
2−x(1/6)∑6

x′=y

(
x′

y

)
2−x′(1/6)

=

(
x
y

)
2−x∑6

x′=y

(
x′

y

)
2−x′

We may ask for example, what is the likeliest value for X if Y = 2. Below, pX|Y (x|2), i.e., the conditional
distribution of X given Y = 2. We can see that the likeliest values for X are 3, 4.

1 2 3 4 5 6

0

5 · 10−2

0.1

0.15

0.2

0.25

x

p
X

|Y
(x
|2
)

△

Bayes’ rule is used in evidential reasoning, examples of which we will see in the next chapter. In this setting,
the goal is to find the probabilities of different causes based on the evidence.

Bayesian inference takes its name from Bayes rule. In this setting, it is often the case that we know the
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distribution of data given the parameters. But what we actually have is data and need to find the distribution
of the parameters. The Bayes rule allows us to find this conditional distribution, a topic we will discuss in
detail later.

0.5 Inequalities and limits

0.5.1 Inequalities
0.5.1.1 Markov inequality

Suppose the average length of a blue whale is 22m and we do not know anything else about the distribution
of the lengths of blue whales. Can we say anything about the probability that the length of a randomly
chosen blue whale is ≥ 30m? For example, is it possible that this probability is 0.8 or larger? No, since in
that case, the average would be ≥ 0.8× 30m = 24m. So only knowing the mean enables us to say something
about the extremes of the probability distribution.

This observation is formalized via the Markov inequality. For a non-negative random variable X, we have

Pr(X ≥ a) ≤ EX
a
.

Exercise 0.34. Prove the Markov inequality. △

A special case of this occurs when X counts something, i.e., it only takes non-negative integer values. Then,

Pr(X ≥ 1) = Pr(X > 0) ≤ EX, Pr(X = 0) ≥ 1− EX.

In particular, if the mean EX is small, then there is a large probability that X = 0.

Exercise 0.35 (†). Provide a bound on the probability that in a random binary sequence of length n, there
exists a run (consecutive occurrences) of 1s of length at least 2 log2 n? (The result will tell you that this is
unlikely for large n.) △

0.5.1.2 Chebyshev inequality

If in addition to the mean, we also have the variance, we can use the Chebyshev bound. For a random
variable X with mean µ and variance σ2,

Pr

(∣∣∣∣X − µσ

∣∣∣∣ ≥ a) ≤ 1

a2
.

Exercise 0.36. Prove the Chebyshev bound using the Markov bound. △

Example 0.37. The Chebyshev bound tells us that being k standard deviations away from the mean has
probability at most 1/k2.

k 2 3 4 5 6 7 8 9 10
Probability of deviating
more than k × std is ≤ 25% 11.1% 6.25 % 4% 2.78% 2.04% 1.56% 1.23% 1%

In particular, being 10 standard deviations away from the mean has probability at most 1%. △

0.5.2 Limits
Limits in probability provide a way to understand what happens when the number of experiments grows or
many random effects accumulate. Limit theorems are beneficial given that we often deal with large volumes
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of data. The following limit theorems will be helpful to us later in the course.

0.5.2.1 Law of large numbers

Let X1, . . . , Xn be random variables with mean µ and variance ≤ σ2 and suppose that for each i and j, Xi

and Xj are uncorrelated (in particular, independent). Also, let X̄n = 1
n

∑n
i=1Xi. Then, for any ϵ > 0,

Pr
(
|X̄n − µ| ≥ ϵ

)
≤ σ2

nϵ2
. (0.13)

As n becomes large the right side becomes smaller and smaller. So for large n the probability of X̄n being
too far from the mean is very small. This is referred to as the Law of Large Numbers (LLN). In other
words, if we take n independent samples from a random variable X, then the average of those samples will
be close to the mean EX,

1

n
(x1 + x2 + ...+ xn) ≃ E[X],

which is what we used to motivate expected value.

Exercise 0.38. Use the Chebyshev inequality to prove LLN when random variables are independent and
all have the same variance σ2. △

Example 0.39. Suppose Xi ∼ Poi(2), 1 ≤ i ≤ 500, and let X̄n be the average of the first n Xis. Figure 2
shows the plot for X̄n for a realization of Xis obtained via computer simulation. It is observed that for large
values of n, X̄n is close to 2, the mean of the Poisson distribution. △
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Figure 2: X̄n based on Xi ∼ Poi(2) as a function of n.

0.5.2.2 Central limit theorem

Let X1, X2, . . . be iid random variables with mean µ and variance σ2 and let X̄n = 1
n

∑n
i=1Xi. As n→∞.

The Central Limit Theorem (CLT) states that

distribution of
√
n(X̄n − µ) → N (0, σ2). (0.14)

That is, the distribution of
√
n(X̄n−µ) approaches the distribution of a normal random variable with mean

0 and variance σ2.
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Loosely speaking, the CLT also means Sn =
∑n

i=1Xi has distribution N (nµ, nσ2).

Example 0.40. Let Xi ∼ Uni(0, 1), 1 ≤ i ≤ n = 10. We produce 50, 000 samples of X̄n (and Sn), and plot
the normalized histograms for

√
n(X̄n − µ) and the pdf of N (0, σ2) and the normalized histogram for Sn

and the pdf of N (nµ, nσ2) in Figure 3. △

-2 0 2 4 6 8 10
0

0.5

1

Figure 3: The normalized histograms for
√
n(X̄n−µ) and the pdf of N (0, σ2) (on the left) and the normalized

histogram for Sn and the pdf of N (nµ, nσ2) (on the right) for uniform Xi with µ = 1/2 and σ2 = 1/12 and
with n = 10.

0.6 Random vectors
A random vector is a vector of random variables.5 Consider the random vectors X and Y

X =

X1

...
Xm

, Y =

Y1...
Yn

. (0.15)

The expected value of X is

EX =

EX1

...
EXm

. (0.16)

The correlation matrix of X and Y is the m × n matrix E[XY T ], whose i, jth element is E[XiYj ].
The cross-covariance matrix Cov(X,Y ) of X and Y is the matrix E[(X − EX)(Y − EY )T ], whose
i, jth element is Cov(Xi, Yj). The covariance of a vector X is Cov(X) = Cov(X,X). The conditional
expectation E[X|Y ] of X given Y is a vector whose ith element is E[Xi|Y ].

If the elements of X are uncorrelated, then Cov(Xi, Xj) = 0 for i ̸= j and the covariance matrix becomes
diagonal. If, in addition, Cov(Xi, Xi) = Var(Xi) = σ2, i.e., all elements of X have the same variance σ2,
then Cov(X) = σ2I.

0.6.1 Properties of expectation and covariance
For deterministic matrices A,B, deterministic vectors a, b, and random vectors X,Y ,W ,Z, we have [1]

1. E[AX + a] = AEX + a

2. Cov(X,Y ) = E[X(Y − EY )T ] = E[(X − EX)Y T ] = E[XY T ]− EX EY T

3. E[(AX)(BY )T ] = AE[XY T ]BT

5We use lowercase bold letters to denote deterministic vectors, uppercase bold letters to denote random vectors, and uppercase
sans serif letters, such as A, to denote matrices.
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4. Cov(AX + a,BY + b) = ACov(X,Y )BT

5. Cov(AX + a) = ACov(X)AT

6. Cov(W +X,Y +Z) = Cov(W ,Y ) + Cov(W ,Z) + Cov(X,Y ) + Cov(X,Z)

Example 0.41. For a random vector X and constants a, b, from property 5, we have Cov(aX + b) =
a2 Cov(X). We also prove this using the other properties. The relevant properties are given in each step.

Cov(aX + b) = Cov(aX + b, aX + b) (0.17)
6
= Cov(aX, aX) + Cov(aX, b) + Cov(b, aX) + Cov(b, b) (0.18)
2
= a2 Cov(X,X) + 0 + 0 + 0 (0.19)

△

References
[1] Bruce Hajek. Random Processes for Engineers. Illinois, 2014. url: http://hajek.ece.illinois.edu/

Papers/randomprocJuly14.pdf (visited on 01/30/2017).
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Chapter 1

Probability, Inference, and Learning

1.1 Introduction
In this chapter, we will study the role of probability in inference, codifying relationships, and machine
learning. When considering these problems, we deal with uncertainty, and that’s were probability comes in.
In other words, we are interested in probability because it allows us to model uncertainty (or equivalently,
belief and knowledge). Sources of uncertainty, for example in machine learning, include:

• Noise: aggregate contribution of factors that we do not (wish to) consider (models focus on the most
important quantities).

• Finite sample size: finite size of data makes it impossible to determine relationships (i.e., probability
distributions) as some configuration may never happen or happen few times in finite data.

1.2 Relationships and joint probability distributions
Is there any relationship between the arrival times of two people working at a business (opening at 9:00 am),
both living in the same area? If so, how can we represent this relationship? How can we make prediction
about one being late given the other is late (e.g., if we need at least one person be present)?

In the same way that we can encode our information about a random quantity as a distribution, we can
encode information about random quantities, as well as their relationships, as joint distributions.

In our example, there’s obviously a relationship, that is, the arrival times are not independent. For example,
both are affected by traffic. Let

T0 : normal traffic
T1 : heavy traffic
A0 : Alice is on time
A1 : Alice is late
B0, B1 for Bob

and assume

Pr(T0) = 0.65,

Pr(A0|T0) = 0.9,

Pr(B0|T0) = 0.82,

Pr(A0|T1) = 0.5,

Pr(B0|T1) = 0.15.
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Finally, conditioned on the traffic situation, Alice and Bob’s arrival times are independent. This information
completely determines all probabilities. As we will see in much grater depth later, the fact that the Alice
and Bob’s arrival times are only related through traffic can be shown graphically as

T

A B

Causal reasoning:

Pr(A0) = Pr(T0) Pr(A0|T0) + Pr(T1) Pr(A0|T1) = (0.65× 0.9) + (0.35× 0.5) = 0.76

Pr(B0) = Pr(T0) Pr(B0|T0) + Pr(T1) Pr(B0|T1) = (0.65× 0.82) + (0.35× 0.15) = 0.5855

Evidential reasoning (inverse probabilities, uses Bayes rule):

Pr(T0|A0) = Pr(A0|T0) Pr(T0)/Pr(A0) = 0.65× 0.9/0.76 = 0.7697

Pr(T0|B0) = Pr(B0|T0) Pr(T0)/Pr(B0) = 0.65× 0.82/0.5855 = 0.9103

The common cause makes the eventsAi andBi dependent. Recall that two events E1 and E2 are independent,
denoted E1 ⊥⊥ E2 if Pr(E1E2) = Pr(E1) Pr(E2), or, if Pr(E2) ̸= 0, Pr(E1|E2) = Pr(E1). We have

Pr(A0|B0) = Pr(A0B0)/Pr(B0)

Pr(A0B0) = (0.65× 0.82× 0.9) + (0.35× 0.15× 0.5) = 0.506

Pr(A0|B0) = 0.506/0.586 = 0.863 ̸= Pr(A0)

Pr(B0|A0) = 0.506/0.76 = 0.6658 ̸= Pr(B0)

So A0 ̸⊥⊥ B0.

However, they are conditionally independent, by assumption

Pr(A0B0|T0) = Pr(A0|T0) Pr(B0|T0),

which is denoted as A0 ⊥⊥ B0|T0.
What is the source of uncertainty in this problem? Since we have assumed the distribution is known, finite
sample size is not an issue. The source is noise. For example, if we had information about other factors
affecting Bob, e.g., how reliable his car is, if he needs to drop off his kids, etc., we could reduce the amount
of noise and make better predictions.

1.3 Inference and decision making
Let us consider a problem about inferring unknown values and making decisions and use probability to
solve it, using both frequentist and Bayesian views. Suppose that the probability that someone with a given
allele of a gene will develop a certain disease is θ. We are interested in determining θ. In particular, we may
be interested in comparing this with the fraction of people in the general population with that disease, say
0.01. Different interpretations lead to different approaches to problems. But to decide, both frequentists
and Bayesians need data.

Data (D): Among a sample of 100 people with this allele, 2 had the disease.

• A Frequentist thinks of θ as unknown non-random parameter. She starts by asking “What is the
probability of the observation as a function of θ?” We can view each of the 100 people chosen to be an
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independent Bernoulli trial with probability θ. So the distribution is Binomial and the probability of
the observation as a function of θ is

L(θ) =

(
100

2

)
θ2(1− θ)98.

Probability of the observation as a function of the parameter is called the likelihood function. So what
value for θ makes the most sense? Since the observation has actually happened, we would expect it to
have a high probability so we find θ that maximizes the likelihood. This method is called maximum
likelihood estimation, and we’ll discuss it in much more detail later. In this case, we estimate θ to be

θ̂ = argmax
θ
L(θ) =

2

100
,

which is a reasonable estimate. But how close is the estimate to the true value? For frequentists, this is
a tricky question to answer probabilistically since the true value and the estimate are both deterministic
at this point. With some clever reasoning (some would say mental gymnastics), frequentists come up
with confidence intervals and confidence levels to quantify the accuracy of estimators.

• A Bayesian thinks of θ as random and assigns to it a distribution, called the prior, before seeing the
data. Thinking of θ as random is imaginative (some would say questionable) since there is no repeatable
experiment and there is a single value that is true. One way to justify randomness of θ is to think of
our universe being drawn from a set of possible universes. Regardless, the Bayesian view is used widely
in practice.

Our Bayesian statistician then looks at the data and updates her distribution for θ, thus obtaining
the posterior distribution. Assume that before seeing the data, we believe that the distribution for θ
is uniform, i.e., p(θ) ∼ Uni[0, 1] = Beta(1, 1). This means that while we do not know what θ is, we
believe it is equally likely to be any value between 0 and 1. When we see the data, we can update this
belief,

p(θ|D) = p(D|θ)p(θ)
p(D) (Bayes’ rule)

It turns out p(θ|D) ∼ Beta(3, 99).
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In contrast to the frequentist view, the Bayesian view is consistent and flexible. For example, we can show
that

p(θ > 0.01|D) = 0.92.

What is the source of uncertainty in this problem? It is the finite sample size. If we know the status of a
very large number of people with the allele, we would know the distribution/ the value of θ.
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1.4 Machine Learning and Probability
Let us consider the generic form of supervised machine learning problems, which have the following compo-
nents:

• Data: D = {(x1, y1), ..., (xN , yN )}, xi ∈ X , yi ∈ Y. X is called the feature space, and Y is called
the label space. As an example, each xi could be a vector providing information about a house, e.g.,
(location, lot size, square footage, number of bedrooms, . . . ), and yi can be the sale price of the house.

• Assumption: (xi, yi) are iid samples of random variables X and Y . The joint distribution (X,Y ) is
(partially) unknown.

• Goal: Find the “best” function f to predict y corresponding to a given x. In other words, the function
f produces an estimate ŷ = f(x) of y given data x. Continuing our example, y would be the true but
unknown price of the house with features x, and f(x) would be a prediction (similar to what Zillow
does).

• Evaluation: How do we define “best”? For a given data point (x, y), evaluate the success of f using a
loss function L(y, f(x)), e.g., L(y, f(x)) = |y − f(x)|. Ideally, we would like to minimize the expected
loss over all possible outcomes weighted by their probabilities, so we define

L(f) = E[L(Y, f(X))], (1.1)

also known as the population risk, where the expectation is over the distribution p(x, y) of (X,Y ).
Our goal then becomes finding

f∗∗ = argmin
f
L(f) = argmin

f
E[L(Y, f(X))]. (1.2)

• Learning Algorithm: The algorithm that finds f∗∗, or tries to.

The expectation in (1.2) is computed using the joint distribution p(x, y). Here is where we face our main
machine learning challenge: What we have is the data set D consisting of samples from p(x, y),
but what we need to find f∗∗ is the joint distribution p(x, y). We can address this mismatch in two
ways, either through the Empirical Risk Minimization framework discussed in §1.4.1, or through estimating
the unknown distribution p(x, y) using D as discussed in §1.4.2.

Before proceeding further, let us consider two common problems in supervised learning:

• Regression: Y consists of scalars or vectors of reals. For example, predicting stock price based on
financial information, or determining the score someone will assign a movie based on previous scores.
A common loss function is the quadratic or squared error loss function:

L(y, f(x)) = (y − f(x))2. (1.3)

It can be shown that for this loss, if the distribution is known,

f∗∗(x) = E[Y |X = x]. (1.4)

• Classification: Y consists of classes or categories. For example, speech recognition, hand writing
recognition, the presence or absence of a disease. A common loss function is the 0-1 loss:

L(y, f(x)) =

{
1, if y ̸= f(x).

0, if y = f(x).
(1.5)

In this case, if the distribution is known, then the best classifier is

f∗∗(x) = argmax
y∈Y

p(y|x). (1.6)
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We emphasize again that to solve the problem optimally as in (1.4) and (1.6), we need to know the joint
distribution of x and y or the conditional distribution of y given x.

1.4.1 Empirical Risk Minimization (ERM)
Since we usually do not know the distribution but have access to data D = {(x1, y1), . . . , (xN , yN )}, we
cannot directly minimize the expected loss as in (1.2). Instead we can minimize the empirical risk, i.e.,
the loss on observed data points,

f∗∗ = argmin
f

E[L(Y, f(X)] → f∗∗N = argmin
f

1

N

N∑
i=1

L(yi, f(xi)). (1.7)

So instead of the best possible solution based on the distribution, f∗∗, we should try to find f∗∗N based on N
data points. But finding f∗∗N is still problematic, as it only provides a way for us to determine the value of
f(x) for x ∈ {x1, . . . , xN}. In other words, it is not able to extrapolate or generalize.

A common solution, which is also helpful from a practical point of view, is to restrict the choices for f to a
set H, called the hypothesis set. This leads to the ERM formulation of the learning problem

f∗ = argmin
f∈H

E[L(Y, f(X)] → f∗N = argmin
f∈H

1

N

N∑
i=1

L(yi, f(xi)). (1.8)

For example, we may choose H to be the set of linear or sigmoid functions. By restricting predictors to the
hypothesis set H, we have introduced our prior knowledge, or bias towards the learning task.

1.4.2 Density estimation
As mentioned, distribution estimation, aka density estimation, is another way to use data for prediction. Here
we discuss only parametric density estimation, where we can (or choose to) represent the joint distribution
of (X,Y ) using a probabilistic model with some unknown parameters, for example, a graphical model with
known structure and unknown parameters. There are also nonparametric ways of estimating distributions.

Let us consider maximum likelihood, which is one method for parameter estimation. Suppose the distribution
has a set of unknown parameters θ and we represent the distribution as pθ. So what should we choose as the
value of θ? If an outcome has a small probability, the chance it appears in our dataset D is small. So those
outcomes observed in D must have large probability. Hence, we must choose θ such that the probability
assigned to D is large, that is,

θ̂ = argmax
θ
pθ(D)

= argmax
θ

N∏
i=1

pθ(xi, yi)

= argmax
θ

N∑
i=1

log pθ(xi, yi),

where in the last step, we use the monotonously of the log function to convert the product to a simpler-to-
deal-with summation. We’ll cover this in more detail later. For now, let us assume we can find θ̂, and in
turn, pθ̂(x, y) as our estimate of the joint distribution p(x, y).

With pθ̂(x, y) in hand, we can solve (1.2) as

f̂N = argmin
f

Eθ̂[L(Y, f(X)],

where Eθ̂ is expectation computed using the estimated distribution pθ̂. As we have seen in (1.4), for quadratic
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and 0-1 losses, we respectively have

f̂N (x) = Eθ̂[Y |X = x],

f̂N (x) = argmax
y∈Y

pθ̂(y|x).

1.5 Information theory and machine learning
Information theory deals with quantifying information and the rules that govern its transmission, storage,
and transformation from one form to another. It has applications in communications, data storage, machine
learning, and biology. In machine learning it can be used to help better understand relationships between
knowns and unknowns, design loss functions, and establish fundamental limits on how well we can do with
a certain amount of data (regardless of the type of algorithm and computational resources).

1.5.1 Quantifying uncertainty
Let X be a Bernoulli random variable that is equal to 1 if it is raining in Seattle and 0 otherwise. Similarly, let
Y be indicate whether its raining in Phoenix. How much information do X and Y provide us? Alternatively,
before they are revealed, how uncertain are we about X and about Y ? Can we measure the information
content of a random variable, or equivalently, our uncertainty about them.

Let’s look at specific outcomes for each variable:

• X = 1: It’s raining in Seattle. This is a statement with a fair amount of information as rain in Seattle
is almost 50/50.

• Y = 0: It’s not raining in Phoenix. This statement doesn’t provide a lot of information as this outcome
is expected and has a high probability.

• Y = 1: It’s raining in Phoenix. This provides a lot of information as this outcomes is unlikely and
surprising.

So as a function of probability, the amount of information of a given statement decreases as the probability
increases. If the probability of an outcome is p, what is a good function describing the amount of information
we gain from learning that the outcome has occurred? It turns out a good choice is I(p) = log 1

p , which
is called the self-information function and shown in Figure 1.1 when the base of the log is 2. Then the
information content of the statement ‘X = xi’ is

I(p(xi)) = log
1

p(xi)
.

And the amount of information on average for a random variable X that takes values in the set X =
{x1, . . . , xm} is

H(X) = E
[
log

1

p(X)

]
=

m∑
i=1

p(xi) log
1

p(xi)
,

where for continuous RVs, the sum must be replaced with an integral. This is called the entropy. If the log
is base 2, then the unit is a bit.

If there are m different possible outcomes, then the maximum value that entropy can take is logm. So

0 ≤ H(X) ≤ logm.

An important special case is the binary entropy function Hb(p) = p log 1
p + (1 − p) log 1

1−p for experiments
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Figure 1.1: Self-information (left) for an event with probability p and binary entropy (right) for a Bernoulli
RV with probability of success equal to p.

with two outcomes with probabilities p and 1− p. For example,

H(Fair coin) = Hb

(
1

2

)
= 1,

H(6 on a die) = Hb

(
1

6

)
= 0.65,

H(Rainy day in Seattle) = Hb

(
150

365

)
= 0.977,

H(Rainy day in Phoenix) = Hb

(
33

365

)
= 0.43784,

H(Rainy day in the Sahara) = Hb

(
1

365

)
= 00.027267.

The plot for binary entropy is given in Figure 1.1. The maximum entropy is 1 bit. This makes sense since
we can represent the outcome with 1 bit. Random variables with equal chances of 0 and 1 have the highest
entropy (and maximum uncertainty). Those with predictable outcomes have lower entropies.

Entropy was introduced by Shannon in his article “A mathematical theory of communication” in 1948. It
is also the minimum amount of “bandwidth” you need to transmit the outcome of the experiment. He also
popularized the term bit (Binary digit).

“My greatest concern was what to call it. I thought of calling it ‘information,’ but the word was overly used,
so I decided to call it ‘uncertainty.’ When I discussed it with John von Neumann, he had a better idea. Von
Neumann told me, ‘You should call it entropy, for two reasons. In the first place your uncertainty function has
been used in statistical mechanics under that name, so it already has a name. In the second place, and more
important, no one really knows what entropy really is, so in a debate you will always have the advantage.” –
Claude Shannon, Scientific American (1971), volume 225, page 180.

1.5.2 Relative entropy
Let X be a random variable with set of possible values denoted as X and its distribution as p(x). Let q
be another distribution also over X . For example, let X be a random Latin letter with p given by the
English letter frequencies and q by the French letter frequencies. For example, we have p(E) = 12.6% and
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q(E) = 15.1%.

The relative entropy, or the Kullback–Leibler divergence, between two distributions p and q is defined as

DKL(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)
. (1.9)

The divergence can be viewed as the difference between the entropy of X when self-information is computed
based on an approximate distribution and when it is based on the “true” distribution since

DKL(p||q) =
∑
x∈X

p(x) log
1

q(x)
−
∑
x∈X

p(x) log
1

p(x)

=
∑
x∈X

p(x) log
1

q(x)
−H(X).

Relative entropy provides a measure of difference between two distributions. It is always non-negative and
equals 0 if and only if q = p. In machine learning, it is used to measure how good our estimated distribution
q is to the true distribution p. It is not symmetric, so DKL(p||q) is not necessarily equal to DKL(q||p).
A related quantity is cross-entropy, which is also used as a loss function,

H(p||q) =
∑
x∈X

p(x) log
1

q(x)
.

So DKL(p||q) = H(p||q) +H(X).

1.5.3 Conditional entropy and mutual entropy*
We can also measure the information in multiple random variables using entropy. The information in both
X and Y is denoted H(X,Y ) and is defined as

H(X,Y ) = E
[
log

1

p(X,Y )

]
=
∑
x∈X

∑
y∈Y

p(x, y) log
1

p(x, y)
.

If we know Y , how much information is left in X? This is denoted H(X|Y ). If, for example X = Y + 2,
then H(X|Y ) = 0 since if we know Y , we also know X. Conditional entropy is defined as

H(X|Y ) =
∑
y∈Y

p(y)H(X|Y = y) = E

[
log

1

p(X|Y )

]
= H(X,Y )−H(Y )

Mutual information, I(X;Y ), represents the amount of information that one random variable has about the
other, and is defined as

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X).

While this quick overview is sufficient for our purposes in this course, if you are interested, you can check
out the slides for this Short Lecture on Information Theory, or the course Mathematics of Information.
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Chapter 2

Frequentist Parameter Estimation

2.1 Overview
Parameter estimation can be used to infer unknowns about the real world (e.g, the frequency of a given
disease among individuals with a certain genetic mutation) and to estimate the distribution of the data in
machine learning problems.

There are two main frameworks for parameter estimation:

• Frequentist methods: In the frequentists’ perspective, the true parameter value θ∗ is unknown and fixed.
The estimate θ̂ is a function of the data, which provides a single “best” estimate of θ∗. Frequentists have
different methods for estimation including maximum likelihood, which we will discuss in detail, and
the moment method, which finds the parameters by solving equations obtained by equating empirical
moments and theoretical moments.

• Bayesian methods: Parameters are considered to be random and are treated as such. The Bayesian
method provides a unified approach consisting of the following steps:

1. Start with the prior distribution for the parameter

2. Collect data

3. Obtain posterior distribution by updating the prior distribution using data and Bayes’ theorem

2.2 Maximum likelihood estimation
Suppose data x is collected. We model this data as a realization of a random variable X with distribution pX ,
which has an unknown parameter θ∗. The probability of observing x, assuming θ, is pX(x; θ). To estimate
θ∗, Maximum likelihood estimation (MLE) chooses the parameter that assigns the highest probability
to the data:

θ̂mle = argmax
θ
pX(x; θ).

The expression p(x; θ), viewed as a function of θ, is called the likelihood; hence the name maximum
likelihood estimation. As shorthand, we use L(θ) = pX(x; θ) and ℓ(θ) = lnL(θ), where ℓ(θ) is the log-
likelihood. Clearly, the value of θ that maximizes L(θ) is the same as the one that maximizes ℓ(θ):

θ̂mle = argmax
θ
ℓ(θ) = argmax

θ
ln pX(x; θ)

Example 2.1. In this example, we attempt to show the intuition behind maximum likelihood. Suppose that
a given road has heavy traffic or light traffic. We denote the probability of light traffic by θ∗. To estimate
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data, we count the number of times X that the road has light traffic in a period of 100 days. After collecting
this data, we observe that X = 65. We have

pX(65; θ) =

(
100

65

)
θ65(1− θ)35

Let’s try a few different choices for θ, e.g., θ ∈ {0.2, 0.4, 0.6, 0.8}, and see which one makes more sense:

p(65, θ = 0.2) = 1.6× 10−22,

p(65, θ = 0.4) = 0.00000026,

p(65, θ = 0.6) = 0.0491,

p(65, θ = 0.8) = 0.00019,

If θ = 0.2, the probability of 65 days with light traffic is extremely small. So observing x = 65 would be very
unlikely, which in turn would make θ = 0.2 an unreasonable guess. Among the presented choices, θ = 0.6
appears the most reasonable. This reasoning suggests the following: The value of the parameter that assigns
a higher probability to the observation is a better choice.

Since we are not limited to a specific set of choices, we can find the parameter that maximizes the probability
of the observation. In the figure below, L(θ) = p(x; θ) is plotted as a function of θ. This is the likelihood
function.

0 0.2 0.4 0.6 0.8 1
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

θ

L
(θ
)
=

p
(x
;θ
)

We can see that θ = 0.65 maximizes the likelihood and hence is the maximum-likelihood estimate. We can
also show this analytically. First, the likelihood is given as

L(θ) = p(x; θ) =

(
100

65

)
θ65(1− θ)35.

We usually use the log-likelihood as the function to optimize:

ℓ(θ) = logL(θ) = log

((
100

65

)
θ65(1− θ)35

)
.
= 65 log θ + 35 log(1− θ), (2.1)

where .
= denotes equality but with ignoring additive terms that are constant in θ (and thus do not alter the

value of θ that maximize the log-likelihood). We differentiate ℓ(θ) to find the value of θ that maximizes l(θ).

dℓ(θ)

dθ
=

65

θ
− 35

1− θ = 0 =⇒ 65− 65θ = 35θ =⇒ θ̂mle =
65

100
. (2.2)
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Note that this result is intuitive as it agrees with our observation that 65% of the days had light traffic. △

A note on notation: In general, our data is a vector, which we denote by bold symbols such as x. The
corresponding random variable is X.

Example 2.2 (Parameters of the normal distribution). A device for measuring an unknown quantity
µ∗ (e.g., the mass of an electron) is used n times producing values Y = (Y1, . . . , Yn). Each measurement
is independent and for each i we have Yi = µ∗ + Zi, where Zi is the measurement noise satisfying Zi ∼
N (0, (σ∗)

2
). Note that this implies Yi ∼ N (µ∗, (σ∗)

2
).

Suppose we have collected data y = (y1, . . . , yn). We consider the problem in two cases: µ∗ is unknown but
σ∗ is known; and both µ∗ and σ∗ are unknown.

• Known σ∗, unknown µ∗: We have

pYi
(yi;µ) =

1

σ∗
√
2π

exp

(
−1

2

(
yi − µ
σ∗

)2
)

L(µ) = pY (y;µ) =

n∏
i=1

pYi
(yi;µ)

ℓ(µ) =

n∑
i=1

ln pYi(yi;µ) =

n∑
i=1

(
− ln(σ∗√2π)− 1

2

(
yi − µ
σ∗

)2
)

.
= −1

2

n∑
i=1

(
yi − µ
σ∗

)2

and so

dℓ

dµ
=

n∑
i=1

yi − µ
σ∗ = 0 =⇒ µ̂mle =

1

n

n∑
i=1

yi = ȳ.

• Unknown σ∗, µ∗: We have

ℓ(µ, σ) =

n∑
i=1

(
− ln(σ

√
2π)− 1

2

(
yi − µ
σ

)2
)

.
= −n lnσ − 1

2

n∑
i=1

(
yi − µ
σ

)2

and so

∂ℓ

∂µ
=

n∑
i=1

yi − µ
σ

= 0,

∂ℓ

∂σ
= −n

σ
+

n∑
i=1

(yi − µ)2
σ3

= 0.

Solving this system of equations for µ and σ yields

µ̂mle =
1

n

n∑
i=1

yi = ȳ,

σ̂2
mle =

1

n

n∑
i=1

(yi − ȳ)2.

△
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2.2.1 Maximum likelihood and the closest distribution
We have described maximum likelihood as aiming to find a distribution that gives a high probability to the
observed data. An alternative view relates it to the empirical distribution of the data, denoted px. Given
x = {x1, . . . , xn}, let #x denote the number of times x appears in x. The empirical distribution is given as

px(x) =
#x

n
=

1

n

n∑
i=1

1(x = xi)

where 1(·) equals 1 if the enclosed condition is true and 0 otherwise.

Now consider a parameterized family of distributions pθ. It makes sense to choose θ such that pθ is close to
px. In other words, we would like θ to be chosen such that pθ describes the observed data well. A standard
way of measuring the “closeness” of pθ to the empirical distribution px is relative entropy, DKL(px||pθ).
It turns out the closest distribution is in fact given by maximum likelihood, i.e.,

θ̂mle = argmin
θ
DKL(px||pθ). (2.3)

This fact provide further evidence for the soundness of MLE strategy. Note in particular that if there exists
θ such that pθ = px, it will be chosen by MLE. This is because relative entropy is always non-negative and
equals to 0 if and only if the two distributions are the same. So choosing pθ = px, if possible, provides the
smallest value for the relative entropy, i.e., 0.

Exercise 2.3. Prove (2.3). △

Exercise 2.4. (†) Note that relative entropy is not symmetric. Instead of DKL(px||pθ), we could minimize
DKL(pθ||px). What are the differences between the two formulations and which one is more suitable for
parameter estimation? △

2.3 Properties of Estimators
Maximum likelihood is just one way of estimating parameters. We can choose any function of the data as
the estimate. For instance, in Example 2.2, we could choose the middle (median) value among y1, . . . , yn
as the estimate for µ∗. Given the fact that there are many estimators, how do we evaluate them and select
one?

Clearly, we would like the estimate to be close to the true value. But stating this condition in a rigorous
probabilistic way is a bit challenging in the frequentist framework. We are specifically interested in the error:

θ̂(x)− θ∗,

where θ̂(x) is the estimate based on data x and θ∗ is the true value1. Evaluating θ̂(x) is difficult because,
obviously, the true value is unknown.

So instead of finding the specific error, we may try to find the probability that the true value θ∗ is within
say 10% of the estimate θ̂. But after the estimate is produced based on a given data set, the estimate is a
deterministic value. For instance, in Example 2.1, the MLE is given as θ̂mle = 0.65. So questions such as
“What is the probability that the difference between θ∗ and θ̂(x) is larger than 0.05?” are not meaningful
because, while θ∗ is unknown, both θ∗ and θ̂(x) are deterministic after data is collected and the estimation
task is performed.

The solution to these difficulties is to study the properties of the estimator not based on a specific realization
x of the data but in general, over all possible data sets that could be produced and all the resulting estimated
values. We can think of the thought experiment in which many, many, data sets are collected and the

1Note the slight abuse of notation: sometimes θ is used as the generic parameter, e.g., as the argument of the likelihood
function, and sometimes as the true value of the parameter. The distinction should be clear from the context
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estimation task is performed based on each. The estimate itself is a random variable because each time
we perform the estimation task, new data samples are obtained and these are random, following a certain
distribution. In other words, instead of considering a single estimate θ̂(x) for a specific realization x, we
study the estimator θ̂(X), i.e., a random variable. Then it makes sense to ask “What is the probability
that the difference between θ∗ and θ̂(X) is larger than 0.05?” since θ̂(X) is a random variable with some
distribution. It may be difficult to find the distribution of θ̂(x) and it may depend on the unknown parameter
θ∗ but at least the question is meaningful. In this section, we will see some of the evaluation criteria based
on this view.

A note on notation: Typically, we use θ as the generic parameter, with θ∗ denoting its true value, according
to which X is distributed. For a given data x, the estimate is shown by θ̂(x) or θ̂. So, θ̂ denotes both the
estimator, i.e., a function that produces the estimate given the data, and the estimate; the intent should be
clear from the context. Finally, we may use Θ̂ = θ̂(X) to denote the estimate as a random variable.

2.3.1 Bias
Bias is the expected estimation error,

Bias(θ̂) = E[θ̂(X)− θ∗] = E[θ̂(X)]− θ∗ (2.4)

As discussed, the expected value is taken over the randomness in X. Bias of the estimator tells us whether
in general the estimator over- or under-estimates the true value. If bias is equal to 0, then the estimator is
called unbiased.

Example 2.5 (Example 2.1 continued). Previously, we obtained the maximum likelihood estimate for the
probability θ of having light traffic. Let us find its bias. Again we collect data over 100 days and let X
denote the number of days when there is light traffic. We know that θ̂mle, as a function of data, is given by

θ̂mle(X) =
X

100
,

Note that instead of using a specific value for the number of days with light traffic, such as 65, we use a
random variable X representing this quantity. Dropping the dependence on X for simplicity, the expected
value of θ̂mle is given by

E
[
θ̂mle(X)

]
=

E[X]

100
.

Assuming θ∗ to be the true value, the number X of days when there is light traffic follows Bin(100, θ∗), and
so E[X] = 100θ∗. It follows that

E
[
θ̂mle(X)

]
=

100θ∗

100
= θ∗.

Hence, the maximum likelihood estimate is an unbiased estimator. △

Example 2.6. Given iid data y = (y1, . . . , yn), n ≥ 3, with mean θ∗, let us find the bias of each of the
following estimators,

θ̂1(y) = ȳ =
1

n

n∑
i=1

yi,

θ̂2(y) = y1,

θ̂3(y) =
2y2 + y3

3
.
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Let Yi be the random variable corresponding to observation yi and Ȳ =
∑n

i=1 Y . We have

E θ̂1(Y ) = E Ȳ =
1

n

n∑
i=1

EYi =
1

n

n∑
i=1

θ∗ = θ∗,

E θ̂2(Y ) = EY1 = θ∗,

E θ̂3(Y ) = E
[
2Y2 + Y3

3

]
=

2EY2 + EY3
3

= θ∗.

So all of these estimators are unbiased. △

Example 2.7. Given n samples y = (y1, . . . , yn) from a distribution with mean µ∗ and variance (σ∗)
2, are

the estimators

µ̂ = ȳ =
1

n

n∑
i=1

yi, σ̂2 =
1

n

n∑
i=1

(yi − ȳ)2

for the mean and variance, respectively, unbiased?

For µ̂, we have

E[µ̂(Y )] = E[Ȳ ] = E

[
1

n

n∑
i=1

Yi

]
=

1

n

n∑
i=1

E[Yi] =
1

n
nE[Y1] = µ∗

and so the estimator for the mean is unbiased. We can show (how?) that

E
[
σ̂2(Y )

]
=
n− 1

n
(σ∗)

2

and the bias of estimating (σ∗)
2 is

E
[
σ̂2(Y )

]
− (σ∗)

2
= − 1

n
(σ∗)

2
.

Based on this, we can create an unbiased estimator for the variance as

σ̂2
u(y) =

1

n− 1

n∑
i=1

(yi − ȳ)2.

△

Example 2.8. [1, Example 2.8.2] An urn has m∗ balls, numbered 1, 2, ...,m∗. Suppose however that m∗

is unknown to us. We pick one random ball from the urn and the number on the ball is y. We estimate
m∗ using maximum likelihood. First, let Y be the random variable corresponding to observation y, with
distribution pY (y;m∗). We have

pY (y;m) =

{
1
m y ≤ m,
0 y > m.

and thus

L(m) =

{
1
m m ≥ y,
0 m < y.

Hence, L(m) is maximized by choosing m(y) = y and so m̂mle = y. To find the bias of m̂mle,

E[m̂mle(Y )] = E[Y ] =

m∗∑
i=1

i · 1

m∗ =
m∗ + 1

2
,

Bias(m̂mle) =
m∗ + 1

2
−m∗ = −m

∗ − 1

2
,

which means that the ML estimator tends to underestimates m∗ by almost a factor of 2. △
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Example 2.9 (Linear unbiased estimator). Can we design an unbiased estimator for Example 2.8? There
are many options, but for simplicity we may choose an estimator that is linear in the data, in particular, one
of the form

m̂L(y) = ay + b.

We find a and b such that m̂L is unbiased. We have

E[m̂L(Y )] = aEY + b = a
m∗ + 1

2
+ b.

Setting this equal to m∗ (equality should hold for any m∗) yields a = 2 and b = −1, i.e.,

m̂L(y) = 2y − 1.

△

Example 2.10 (Survival of Humanity (!)). The human species will eventually die out. We use two
methods to estimate the total number of humans m who will ever live. Let humans be enumerated by
birth order as h1, h2, ..., hy, ..., hm, where h1 represents Adam, h2 represents Eve, hy represents you, and hn
represents the last human to live. Assuming that your birth order y is random, the problem is similar to
estimating the number of balls in an urn in Example 2.8.

Assuming that 100 billion humans have been born so far, we have m̂mle = 100 billion and m̂L = 200 billion.
The ML estimate predicts that the end is here. Further, assuming that there will be 140 million births each
year, the unbiased estimator predicts the end of humanity to occur in around 700 years. △

2.3.2 Mean squared error and variance
Example 2.11. Consider an unbiased estimator θ̂ and define θ̂′ = θ̂+W , where W is a zero-mean random
variable with a large variance. Now, θ̂′ is unbiased, similar to θ̂, but it is not a good estimator (regardless of
how good θ̂ is). So clearly, being unbiased alone is not sufficient to ensure that an estimator is “good.” △

For an estimator θ̂, where the random variable describing data is denoted by X, the mean squared error
(MSE) is defined as

MSE(θ̂) = E
[(
θ̂(X)− θ∗

)2]
.

The smaller the MSE, the more accurate the estimator.

Let Θ̂ = θ̂(X). Note that

MSE(θ̂) = E
[(

Θ̂− θ∗
)2]

= E
[((

Θ̂− E Θ̂
)
+
(
E Θ̂− θ∗

))2]
= E

[(
Θ̂− E Θ̂

)2]
+
(
E Θ̂− θ∗

)2
+ 2E

[(
Θ̂− E Θ̂

)](
E Θ̂− θ∗

)
= E

[(
Θ̂− E Θ̂

)2]
+
(
E Θ̂− θ∗

)2
,

where, the third equality uses the fact that E Θ̂− θ∗ is a deterministic constant and the fourth equality the
fact that E

[(
Θ̂− E Θ̂

)]
= 0. Hence,

MSE(θ̂) = Var(θ̂) + (Bias(θ̂))2.

For unbiased estimators, the variance is an important quantity since it is equal to the MSE.

Farzad Farnoud 37 University of Virginia



EPL Chapter 2. Frequentist Parameter Estimation

Example 2.12 (Example 2.1 re-revisit). We saw in Example 2.5 that the maximum likelihood estimate for
the probability of traffic θ∗ is unbiased. Now, let us find its variance. Again, we write θ̂mle(X) = X

100 and

Var(θ̂mle) =
Var(X)

1002
=
θ∗(1− θ∗)

100
,

where X is the number of days without traffic, which follows Bin(100, θ∗) with variance 100θ∗(1 − θ∗). As
we can see, the variance (hence, MSE) increases as the true value of θ∗ approaches 1/2, i.e., every data point
contains more uncertainty. Furthermore, we can extend this result to the more general case where we collect
data for n days. By the same argument, we get

MSE(θ̂mle) = Var(θ̂mle) =
θ∗(1− θ∗)

n
.

△

Example 2.13. Consider data y = (y1, ..., yn), where the corresponding random variables Yi are iid with
distribution N

(
µ, σ2

)
. The ML estimator for the mean µ is θ̂mle(y) = ȳ = 1

n

∑n
i=1 yi is unbiased. We have

MSE(θ̂mle) = Var(Ȳ ) =
σ2

n
.

△

Note that as n increases, the MSE decreases and the estimate becomes more accurate, as would be expected.
This property is studied next.

Exercise 2.14. For the estimators in Example 2.6, find the MSE, assuming the variance is (σ∗)
2. △

Exercise 2.15 (Bias-variance trade-off). Given iid data y = (y1, . . . , yn), n ≥ 3, with mean θ∗ and variance
σ2, show that the MSE of

θ̂1 = ay1,

θ̂n = aȳ =
a

n

n∑
i=1

yi,

for some constant a ∈ R is given as

MSE(θ̂1) = (a− 1)2(θ∗)
2
+ a2σ2,

MSE(θ̂n) = (a− 1)2(θ∗)
2
+ a2σ2/n.

What is a good value for a? Does anything other than a = 1 make sense? The components of the MSE are
given in the plots below for θ̂1 and θ̂n with n = 10, for θ∗ = 0.5, σ2 = 0.1. A trade-off between the bias and
variance is evident. Why is it not feasible to design an estimator by optimizing for a? What is the difference
between estimation based on little data (θ̂1) and a lot of data (θ̂n, n = 10)?
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△

2.3.3 Consistency
Consider an estimator θ̂n(x) based on n samples x = (x1, . . . , xn). Let X = (X1, . . . , Xn) be the random
variables that describe the n data samples and let Θ̂n = θ̂n(X) be the random variable that corresponds to
the estimate. The estimator θ̂n is said to be consistent if Θ̂n → θ∗ as n→∞. More precisely, for all ϵ > 0,
we need

lim
n→∞

Pr(|Θ̂n − θ∗| ≥ ϵ) = 0.

In other words, the estimator is accurate if the size of the data is large.

Example 2.16. The ML and linear estimators described in Examples 2.8 and 2.9 are very different for a
single data point. But how do they behave if we have a lot of data. First we need to define these for n data
samples. Suppose that we take n samples from the urn with replacement, resulting in y = (y1, y2, . . . , yn).
Define

ȳ =
1

n

n∑
i=1

yi.

To extend the linear estimator to n data points, we can choose

m̂L,n = 2ȳ − 1.

For the ML estimator, we have (why?)

m̂mle,n = max
i
yi.

Both of these, although they look very different, are consistent and converge to m∗ as n→∞.

• As n→∞, by LLN, Ȳ converges to the mean of the distribution, i.e., E[Y1] = m∗+1
2 . Hence, m̂L,n →

2 · m∗+1
2 − 1 = m∗.

• For the ML estimator, as n → ∞, at some point, we will pick the ball numbered m∗ and so we will
eventually have m̂mle = m∗.

Given the two estimators, the bad news is that the estimators disagree significantly for small data. However,
as the size of the sample data increases, the two estimators agree. △
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Figure 2.1: The likelihood function on the left demonstrates strong dependence on θ compared to the one
on the right.

2.4 The Cramer-Rao lower bound*
For an unbiased estimator, the MSE is equal to the variance, and thus the variance represents the accuracy
of the estimator. This leads to the following question: For a given distribution of data, what is the smallest
possible variance of an unbiased estimator?

The accuracy of estimating a parameter θ depends on how strongly the distribution of the data X depends on
θ. If the dependence is strong, i.e., for values of θ other than the true value θ∗, the probability of the observed
data falls sharply, then we may expect to find θ∗ with accuracy. On the other hand, if the dependence is
week, then it will be difficult to find θ∗ with precision. These two cases are shown in Figure 2.1.

Let the data be encoded as a vector X, whose distribution is given by p with parameter θ∗. Assuming
X = x, the log-likelihood is p(x; θ). The sharpness of the log-likelihood ℓ(θ) at the true value θ∗ can be
quantified as

−∂
2ℓ(θ)

∂θ2

∣∣∣∣
θ=θ∗

= −∂
2 ln p(x; θ)

∂θ2

∣∣∣∣
θ=θ∗

. (2.5)

Given the randomness of the data X, the above quantity is random,

−∂
2 ln p(X; θ)

∂θ2

∣∣∣∣
θ=θ∗

So to average over the data, we define

I(θ∗) = −E
[
∂2 ln p(X; θ)

∂θ2

∣∣∣∣
θ=θ∗

]
= −

ˆ
∂2 ln p(x; θ)

∂θ2

∣∣∣∣
θ=θ∗

p(x; θ∗)dx,

which is called the Fisher Information.

The following theorem provides a lower bound on the variance, which is referred to as the Cramer-Rao lower
bound (CRLB).

Theorem 2.17 (CRLB). Given that the log-likelihood ℓ(θ) satisfies certain regularity conditions, the vari-
ance of any unbiased estimator θ̂ of θ∗ satisfies

Var(θ̂) ≥ 1

I(θ∗)
.
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If an estimator achieves the CRLB, i.e., Var(θ̂) = 1/I(θ∗), then it is called efficient.

As a special case, consider when we have n iid data points, and denote the estimator based on this data
as θ̂n. Denote the Fisher information based on n data points as In(θ∗) and based on one data point as
I1(θ

∗) = I(θ∗). Since the Fisher information is additive (Why? Hint: definition), we have In(θ∗) = nI(θ∗).
Thus, the variance of an unbiased estimator θ̂n based on n independent observations satisfies

Var(θ̂n) ≥
1

nI(θ∗)
. (2.6)

Example 2.18. In Example 2.2, where we estimated the mean µ∗ of a Gaussian distribution with known
σ2 based on n iid samples y1, . . . , yn, the log-likelihood, ignoring constant terms, was given as

ℓ(µ)
.
= −

n∑
i=1

(yi − µ)2
2σ2

.

And,
∂ℓ(µ)

∂µ
=

1

σ2

n∑
i=1

(yi − µ). (2.7)

Observe that
∂2ℓ(µ)

∂µ2
= − n

σ2
=⇒ I(µ∗) = −E

[
∂2ℓ(µ∗)

∂µ2

]
=

n

σ2
.

Based on the CRLB, the variance of the estimator satisfies

Var(µ̂) ≥ σ2

n
.

The variance of the estimator is Var(µ̂) = σ2

n . Hence, the ML estimator is efficient in this case. △

2.5 Asymptotic normality of the MLE
As shown before, the maximum-likelihood estimator is not necessarily unbiased. However, if we have a large
amount of data, under some regularity conditions, the ML estimator Θ̂n based on n iid data points satisfies

√
n(Θ̂n − θ∗)→ N (0, I−1(θ∗)).

So for large data, Θ̂n is nearly normally distributed with mean θ∗ (hence unbiased) and variance I−1(θ∗)/n
(efficient).

While we stated the CRLB and the asymptotic normality of the MLE for scalar parameters, almost identical
results also hold for a vector of parameters.
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Chapter 3

Bayesian Parameter Estimation

3.1 From Prior to Posterior
In the Bayesian philosophy, unknown parameters are viewed as random. So, our knowledge about the
parameter can be encoded as a distribution. The distribution representing our belief before observing the
data is called the prior distribution. After we observe the data, our belief changes, resulting in the
posterior distribution.

Specifically, the components of a Bayesian estimation problem are:

• Data x: The data is a realization of a random variable X. The distribution of X depends on a
parameter Θ.

• Parameter Θ: The parameter of the distribution of X, which is unknown, and hence a random variable
in the Bayesian framework.

• Joint and marginal distributions p: A joint distribution pX,Θ and its marginals pX and pΘ.

The steps of Bayesian estimation of a parameter θ are:

1. Identifying the prior distribution, pΘ(θ). This is called the prior because it encodes our beliefs about
Θ before seeing any data.

2. Collecting data x and forming the likelihood: pX|Θ(x|θ)
3. Finding the posterior distribution pΘ|X(θ|x) as

pΘ|X(θ|x) = pΘ(θ)pX|Θ(x|θ)
pX(x)

, (3.1)

The distribution pΘ|X is called the posterior distribution since it encodes our knowledge about the
parameter after observing the data. Usually, since the distribution is clear from the argument, we drop
the subscripts of p, writing the above equation as

p(θ|x) = p(θ)p(x|θ)
p(x)

, (3.2)

Normalizing distributions. Finding the posterior distribution requires computing the integral p(x) =´
θ
p(θ)p(x|θ)dθ. Since we have to compute an integral anyway, we might as well drop all multiplicative terms

that are constant in θ and then normalize the final distribution. In particular, p(x) is one such term. So we
often first find a function proportional to p(θ|x) as

p(θ|x) ∝ p(θ)p(x|θ), (3.3)
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where we can also drop constant terms in θ from p(θ) and p(x|θ). We can then normalize the result by
integration. This is often difficult to do. Sometimes, given this function, we can identify the distribution.
More generally, we can use computational methods, such as Markov Chain Monte Carlo, or approximation
methods, such as variational inference, as we will see later. Finally, in certain cases, we can find what we
need without any integration. For example, if our goal is to find the value of θ maximizing p(θ|x).

Example 3.1. Let Θ denote the unknown parameter of a geometric random variable X, where

pX|Θ(x|θ) = θ(1− θ)x−1.

Suppose we observe X = x. We would like to estimate Θ based on this observation. If all possible values of
Θ are equally likely, we may choose Θ ∼ Uni(0, 1). We then have

p(θ) = 1 (3.4)
p(x|θ) = θ(1− θ)x−1 (3.5)
p(θ|x) ∝ p(θ)p(x|θ) ∝ θ(1− θ)x−1 (3.6)

The expression θ(1 − θ)x−1 as a function of x is the geometric distribution. But as a function of θ, it is
proportional to Beta(2, x). As an example, if x = 3, then Θ|x ∼ Beta(2, 3):
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△

Exercise 3.2. The probability of 1 (success) in a Bernoulli experiment (e.g., flipping a coin, a system working
or not working, etc) is Θ, which we would like to estimate. Suppose that the experiment is performed once
and the outcome x is observed to be x = 1. Assuming a uniform prior, find the posterior distribution of Θ,
i.e., pΘ|X(θ|1). △

Example 3.3. The probability of success in a Bernoulli experiment is Θ, which we would like to estimate.
We show success in the ith trial with yi = 1 and failure by yi = 0.

• Prior distribution: Assuming that a priori we do not know anything about Θ, it is appropriate to
choose pΘ ∼ Uni[0, 1], i.e., p(θ) = 1 in the interval [0, 1].

• Likelihood: We then perform the experiment n times. Suppose that we observe s successes and f
failures. Let us denote this observation as x = (s, f). The likelihood is

p(x|θ) =
(
n

s

)
θs(1− θ)f (3.7)
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• The posterior distribution:
p(θ|x) ∝ 1 · θs(1− θ)f = θs(1− θ)f (3.8)

We observe that this distribution is of the form of a beta distribution, Beta(y;α, β) ∼ yα−1(1− y)β−1.
Hence,

p(θ|x) ∼ Beta(s+ 1, f + 1). (3.9)

△

Note that since we are interested in Θ, we can drop multiplicative terms that are constant with respect to
θ, such as

(
n
s

)
, in the above example.

Now that we have the posterior distribution, we can answer questions about the parameter, for example,
What is the probability that 0.4 < Θ < 0.6?

ˆ 0.6

0.4

p(θ|x)dθ (3.10)

Example 3.4 (Consecutive Bayesian updating). Continuing the previous example, suppose that we collect
more data x′ = (s′, f ′), consisting of s′ successes and f ′ failures. Our prior distribution now is the posterior
of the previous example, p(θ) ∝ θs(1− θ)f . We have

p(x′|θ) =
(
s′ + f ′

s′

)
θs

′
(1− θ)f ′

p(θ|x′) ∝ θs(1− θ)fθs′(1− θ)f ′

= θs+s′(1− θ)f+f ′

Θ|x′ ∼ Beta(s+ s′ + 1, f + f ′ + 1).

(3.11)

Equivalently, we can update our uniform prior p(θ) ∝ 1 with data (s+s′, f+f ′) to obtain p(θ|(s+s′, f+f ′)) ∼
Beta(s+ s′ + 1, f + f ′ + 1). As we can see, the Bayesian approach provides a way to update our belief in a
consistent manner.

The figure below provides an example of the posterior with 0, 5, 20, and 50 samples. It can be observed that
the posterior becomes sharper as more data is collected. △
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Example 3.5. Beta is a common prior for the probability of Bernoulli experiments. Based on the discussion
above, one way to interpret a Beta prior with parameters α ≥ 1, β ≥ 1 is to imagine that, starting with the
uniform prior, we have already collected α+ β − 2 samples, with α− 1 successes. The following plot shows
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the Beta distribution with different parameters to give a sense of the range of possible priors. △
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Example 3.6. Suppose that Y has a Poisson distribution with paramter Λ. That is, pY |Λ(y|λ) = Poi(y;λ).
Hence,

p(y|λ) = λye−λ

y!
, y ∈ {0, 1, . . . }

We intend to estimate Λ based on n iid samples yn1 = (y1, . . . , yn) of Y .

We assume that the prior for Λ is given as p(λ) = Gamma(λ;α, β) ∝ λα−1e−βλ. We have

p(λ) ∝ λα−1e−βλ (3.12)

p(yn1 |λ) =
n∏

i=1

λyie−λ

yi!
∝

n∏
i=1

λyie−λ = e−nλλnȳ, (3.13)

where ȳ = 1
n

∑n
i=1 yi. Note that while p(yn1 |λ) is a distribution in yn1 , we still dropped the yi! from its

expression since our final goal is to find a distribution in λ and for this purpose terms that are independent
of λ can be viewed as constant. The posterior is

p(λ|yn1 ) ∝ λα−1e−βλe−nλλnȳ = λα+nȳ−1e−λ(n+β) ∝ Gamma(λ;α+ nȳ, n+ β). (3.14)

If we choose α = 1, β = 0, then the Gamma prior is flat, giving all possible values the same prior probability.
But this is not a proper distribution. However, as long as the final posterior is a proper distribution, an
improper prior is deemed acceptable.

Suppose that n = 10 and ȳ = 2. The figure below shows the posterior distribution with different priors.
The prior on the left is called a non-informative prior because it is flat and the one on the right is an
informative prior given that it represents a prior belief that certain values have a higher probability.
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△

3.2 Bayesian Point Estimates
Having the complete distribution for pΘ|X(θ|x) is useful since it provides the probability for different values
for θ. But sometimes we want to estimate Θ with a single value θ̂ = θ̂(x) as a function of the data, similar
to maximum likelihood. It is very important to note that in the Bayesian framework, the data is given and
the estimate is known (and not random). The best choice for θ̂ then depends on how we characterize the
estimation error:

Average Error Optimal Estimator
E[(Θ− θ̂)2|x] θ̂ = E[Θ|x] (mean)
E[|Θ− θ̂||x] θ̂ = median of p(θ|x)
Pr(Θ ̸= θ̂|x) = E[I(Θ ̸= θ̂)|x] θ̂ = argmaxθ p(θ|x) (mode)

In the table, I(condition) is 1 if the condition is satisfied and is 0 otherwise.

We prove the first case in the table. Let θ̄ = E[Θ|x]. We have

E[(θ̂ −Θ)2|x] = E[((θ̂ − θ̄)− (Θ− θ̄))2|x] (3.15)

= E[(θ̂ − θ̄)2 − 2(θ̂ − θ̄)(Θ− θ̄) + (Θ− θ̄)2|x] (3.16)

= (θ̂ − θ̄)2 − 2(θ̂ − θ̄)E[(Θ− θ̄)|x] + E[(Θ− θ̄)2|x] (3.17)

= (θ̂ − θ̄)2 + E[(Θ− θ̄)2|x] (3.18)

= (θ̂ − θ̄)2 +Var(Θ|x) (3.19)
≥ Var(Θ|x), (3.20)

and the lower bound on the error is achieved when θ̂ = θ̄.

Example 3.7. Generalizing Example 3.3 by assuming p(θ) = Beta(θ;α, β), we obtain p(θ|x) = Beta(θ;α+
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s, β + f) (for Uniform, α = β = 1). We have

Mean =
s+ α

s+ f + α+ β
, (3.21)

Median ≃ s+ α− 1/3

s+ f + α+ β − 2/3
, (3.22)

Mode =
s+ α− 1

s+ f + α+ β − 2
. (3.23)

Generally speaking, Bayesian point estimates are between what is suggested only using the prior and what
would be obtained using only the likelihood. For example, the mean of the prior is α

α+β and the maximum
likelihood solution is s

s+f . The mean of the posterior, s+α
s+f+α+β , is between these two. △

3.3 Posterior Predictive Distribution
Given n iid samples, yn1 = (y1, . . . , yn), we are often interested in the distribution of the next (unobserved)
value, pYn+1|Y n

1
(yn+1|yn1 ). This distribution is referred to as predictive posterior. We have

p(yn+1|yn1 ) =
ˆ
p(yn+1, θ|yn1 )dθ (3.24)

=

ˆ
p(θ|yn1 )p(yn+1|θ, yn1 )dθ (3.25)

=

ˆ
p(θ|yn1 )p(yn+1|θ)dθ, (3.26)

where we have used the fact that Yn+1 ⊥⊥ Y n
1 |Θ. We have thus written the predictive posterior in terms of

two known distributions.

Example 3.8. Continuing Example 3.3, let success in the n+ 1st experiment be denoted by Yn+1 = 1 and
failure by Yn+1 = 0. We have

pYn+1|Y n
1
(1|yn1 ) =

ˆ
θp(Θ|yn1 ) = E[Θ|yn1 ] =

s+ 1

s+ f + 2
, (3.27)

where we have used the facts that pYn+1|Θ(1|θ) = θ and that the mean of Beta(s+ 1, f + 1) is s+1
s+f+2 . △

We may also ask about the expected value of Yn+1 given yn1 , i.e., E[Yn+1|yn1 ]. We can find this by first finding
p(yn+1|yn1 ) explicitly. But it is often easier to use the law of iterated expectations, since yn1 influences Yn+1

through Θ. Recall that

E[E[Y |X]] = E[Y ], E[E[Y |X,Z = z]|Z = z] = E[Y |Z = z]. (3.28)

Hence,
E[Yn+1|yn1 ] = E[E[Yn+1|Θ, yn1 ]|yn1 ] = E[E[Yn+1|Θ]|yn1 ], (3.29)

where the last step follows from the fact that Yn+1 ⊥⊥ Y n
1 |Θ, implying that E[Yn+1|Θ, yn1 ] = E[Yn+1|Θ].

Example 3.9. Let’s find E[Yn+1|yn1 ] in Example 3.6. First, observe that E[Yn+1|Λ] = Λ. We hence need to
find E[Λ|yn1 ]. We know from before that Λ|yn1 is distributed according to Gamma(α+ nȳ, β + n). Therefore,
E[Yn+1|yn1 ] = E[Λ|yn1 ] = α+nȳ

β+n . △
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3.4 Gaussian Prior and Likelihood
Suppose that we want to estimate the mean of a Gaussian distribution with known variance,

p(yi|θ) =
1√
2πσ2

e−
(yi−θ)2

2σ2 (3.30)

given iid data {y1, . . . , yn}.

Improper priors. Assuming that we have no information about this mean, it makes sense to choose the
prior

p(θ) ∝ 1. (3.31)

But since the integral
´∞
−∞ 1dθ = ∞, this does not lead to a valid distribution. Nevertheless, such a choice

is acceptable, if the posterior is a valid distribution. Such priors are called improper priors. An improper
prior does not necessarily have to be uniform.

Example 3.10. Consider the above likelihood and prior and let ȳ = 1
n

∑n
i=1 yi. We have

p(θ|yn1 ) ∝ p(yn1 |θ) · 1 (3.32)

∝ exp

(
−
∑n

i=1(yi − θ)2
2σ2

)
(3.33)

∝ exp

(
−
∑n

i=1(θ
2 − 2yiθ + y2i )

2σ2

)
(3.34)

∝ exp

(
−θ

2 − 2ȳθ

2σ2/n

)
(3.35)

∝ exp

(
− (θ − ȳ)2

2σ2/n

)
(3.36)

Θ|yn1 ∼ N (ȳ, σ2/n). (3.37)

For the expected value of the next sample, we have

E[Yn+1|yn1 ] = E[E[Yn+1|Θ]|yn1 ] = E[Θ|yn1 ] = ȳ. (3.38)

We can see more explicitly as well,

E[Yn+1|yn1 ] =
ˆ
yn+1p(yn+1|yn1 )dyn+1 (3.39)

=

ˆ
yn+1

ˆ
p(yn+1, θ|yn1 )dθdyn+1 (3.40)

=

ˆ
yn+1

ˆ
p(yn+1|θ)p(θ|yn1 )dθdyn+1 (3.41)

=

ˆ
p(θ|yn1 )

ˆ
yn+1p(yn+1|θ)dyn+1dθ (3.42)

=

ˆ
θp(θ|yn1 )dθ (3.43)

= E[Θ|yn1 ] (3.44)
= ȳ. (3.45)

△

For the posterior predictive variance, we have

Var(Yn+1|yn1 ) = σ2 + σ2/n. (3.46)
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It can be shown that Yn+1|yn1 has a Gaussian distribution, and as we know its conditional mean and variance,
we have

Yn+1|yn1 ∼ N (ȳ, σ2 + σ2/n) (3.47)

From the variance, we can see that there are two sources of uncertainty. One is the inherent randomness in
Y , quantified by σ2 and the other is the result of the uncertainty of our estimate of the mean, quantified by
σ2/n.

Example 3.11 (†). Let us prove that Var(Yn+1|yn1 ) = σ2 + σ2/n :

Var(Yn+1|yn1 ) = E
[
(Yn+1 − ȳ)2|yn1

]
= E

[
E
[
(Yn+1 − ȳ)2|Θ, yn1

]
|yn1
]

= E
[
σ2 + (Θ− ȳ)2|yn1

]
= σ2 + E

[
(Θ− ȳ)2|yn1

]
= σ2 + σ2/n

△

We now consider the same problem with a proper Gaussian prior. Note that below as τ0 → ∞, the proper
prior below tends to the improper prior p(θ) ∝ 1.

Example 3.12. We would like to estimate the mean Θ of normally distributed independent values yn1 =
(y1, . . . , yn). Let ȳ =

∑
yi/n. We assume

Θ ∼ N
(
θ0, τ

2
0

)
(3.48)

Yi|θ ∼ N
(
θ, σ2

)
(3.49)

where θ0 and τ20 are the prior mean and variance, respectively, and σ2 is known. We have

p(θ|yn1 ) ∝ p(θ)p(yn1 |θ) (3.50)

∝ 1

στ0
exp

(
−
∑n

i=1(yi − θ)
2

2σ2
− (θ − θ0)2

2τ20

)
(3.51)

With some algebra, it can be shown that conditioned on yn1 , Θ is normally distributed,

Θ|yn1 ∼ N
( nȳ

σ2 + θ0
τ2
0

n
σ2 + 1

τ2
0

,
1

n
σ2 + 1

τ2
0

)
. (3.52)

△

Example 3.13. (†) Let us prove (3.52) using (3.51). We start with the following claim: If pX(x) ∝ e−f(x),
where f(x) = ax2 − bx+ c with a > 0, then X ∼ N

(
b
2a ,

1
2a

)
. Observe that

ax2 − bx+ c =
x2 − bx/a+ c/a

1/a
=

(
x− b

2a

)2 − ( b
2a )

2 + c
a

2(1/(2a))
=

(x− b/(2a))2
2(1/(2a))

+ C, (3.53)

where C is a constant independent from x. Hence,

pX(x) ∝ exp

(
(x− b/(2a))2
2(1/(2a))

)
, (3.54)
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proving the claim. Then, (3.52) can be proven by setting

a =
n

2σ2
+

1

2τ20
, b =

nȳ

σ2
+
θ0
τ20
. (3.55)

△

Example 3.14 (Bias-variance trade-off for a Bayesian point estimator). Suppose that the prior for Θ is
Θ ∼ N

(
0, τ20

)
. Then, from (3.52), the mean (also the mode and median) Bayesian point estimator for Θ is

θ̂B = ȳ

(
τ20

τ20 + σ2/n

)
, (3.56)

while the maximum-likelihood estimator is θ̂mle = ȳ. We can evaluate both estimators in the frequentist
framework, finding their MSE.

Note that the frequentist framework requires us to assume a true value θ∗ and view θ̂B and θ̂mlue as functions
of random data Y n

1 . So they are random variables (however, we won’t switch to capital letters to represent
them here). First, as the MLE is unbiased,

MSE(θ̂mle) = Var(θ̂mle) = Var(Ȳ ) = σ2/n, (3.57)

and by CRLB, this is the best unbiased estimator.

For the Bayesian estimator, we have

Bias(θ̂B) = E[θ̂B ]− θ∗ = θ∗
(

τ20
τ20 + σ2/n

)
− θ∗ = −θ∗

(
σ2/n

τ20 + σ2/n

)
(3.58)

Var(θ̂B) =
σ2

n

(
τ20

τ20 + σ2/n

)2

(3.59)

MSE(θ̂B) = (θ∗)2
(

σ2/n

τ20 + σ2/n

)2

+
σ2

n

(
τ20

τ20 + σ2/n

)2

(3.60)

We can see that the bias term is decreasing in τ20 while the variance term is increasing. So, there is a trade-off
between the two types of error. Smaller values of τ0 mean we have a strong prior, thus leading to bias. A
strong prior is also less sensitive to data, thus leading to a smaller variance.

In particular, for τ20 = (θ∗)2, we have

MSE(θ̂B) =
(θ∗)2σ2/n

(θ∗)2 + σ2/n
< σ2/n = MSE(θ̂mle). (3.61)

So, with the right prior, θ̂B has lower MSE than the maximum-likelihood estimator. Of course, this requires
knowledge of (θ∗), which is not available. However, a good prior found based on experience or intuition can
provide good results.

△

3.5 Conjugate Priors
Given a likelihood function, the conjugate prior is a distribution that leads to a posterior that is from the
same family as the prior. Several examples are given below.
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• Bernoulli/Beta: (y =
∑n

i=1 yi)

p(yi|θ) = θyi(1− θ)1−yi Ber(θ) (3.62)
p(yn1 |θ) = θy(1− θ)n−y (3.63)

p(θ) ∝ θα−1(1− θ)β−1 Beta(α, β) (3.64)

p(θ|y) ∝ θy+α−1(1− θ)n−y+β−1 Beta(y + α, n− y + β) (3.65)

• Exponential/Gamma: (y =
∑n

i=1 yi)

p(yi|θ) = θ exp(−θyi) Exp(θ) = Gamma(1, θ) (3.66)
p(yn1 |θ) = θn exp(−θy) (3.67)

p(θ) =
βα

Γ(α)
θα−1 exp(−βθ) Gamma(α, β) (3.68)

p(θ|yn1 ) ∝ θn+α−1 exp(−(y + β)θ) Gamma(n+ α, y + β) (3.69)

• Gaussian/Gaussian (with known σ2): (ȳ = 1
n

∑n
i=1 yi)

p(yi|θ) ∝ exp

(
(yi − θ)2

2σ2

)
N (θ, σ2) (3.70)

p(yn1 |θ) ∝ exp

(∑n
i=1(yi − θ)2

2σ2

)
(3.71)

p(θ) ∝ exp

(
(θ − µ0)

2

2τ20

)
N (µ0, τ

2
0 ) (3.72)

p(θ|yn1 ) ∝ exp

(
(θ − µ1)

2

2τ21

)
N (µ1, τ

2
1 ), (3.73)

where

µ1 =

1
τ2
0
µ0 +

1
σ2/n ȳ

1
τ2
0
+ 1

σ2/n

, (3.74)

1

τ21
=

1

τ20
+

1

σ2/n
. (3.75)

Note that if a prior is conjugate for the likelihood of a single observation, it is also conjugate for the likelihood
of many iid observations. One way to see this is to note that updating the distribution using n iid observations
is equivalent to updating the distribution n times using single observations consecutively.

Conjugate priors provide a way to fully determine the posterior distribution without the need to integrate
to find the missing constants.

3.6 The Exponential Family (EF)
For a random variable Y with parameter Θ, p(y|θ) is said to be from the exponential family if it has the
following form

p(y|θ) = exp
(
a(y)T b(θ) + f(y) + g(θ)

)
, (3.76)

where a, b, y, θ can be vectors and f, g are scalar functions. b(θ) is referred to as the natural parameter.

The exponential family includes many common distributions such as Gaussian, Beta, Gamma, Binomial,
etc. For likelihoods in this family, we can identify the conjugate prior, thus simplifying Bayesian estimation.
Furthermore, for these distributions all information in the data can be summarized in the sufficient statistics
described below.
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Maximum Likelihood. Suppose that we have n iid observation, leading to the likelihood function

p(yn1 |θ) ∝ exp

(
n∑

i=1

a(yi)
T b(θ) + ng(θ)

)
, (3.77)

Define the sufficient statistics for this likelihood as t(yn1 ) =
∑n

i=1 a(yi). We then have

p(yn1 |θ) ∝ exp
(
t(yn1 )

T b(θ) + ng(θ)
)
. (3.78)

So for finding the maximum likelihood solution, we can summarize all our data as t(yn1 ) and the rest of
the information in yn1 is irrelevant. This is also true for Bayesian estimation. Note that the size of t(yn1 ) is
independent of n.

Bayesian Estimation with Conjugate Priors. In this case, we have the general form of the conjugate
prior

p(yi|θ) ∝ exp
(
a(yi)

T b(θ) + g(θ)
)

(3.79)

p(yn1 |θ) ∝ exp
(
t(yn1 )

T b(θ) + ng(θ)
)

(3.80)

p(θ) ∝ exp
(
νT b(θ) +mg(θ)

)
Dist(ν,m) (3.81)

p(θ|yn1 ) ∝ exp
(
(ν + t(yn1 ))

T b(θ) + (m+ n)g(θ)
)

Dist(ν + t(yn1 ),m+ n), (3.82)

where Dist refers to a specific type distribution.

Pseudo-observations. The parameters in conjugate priors can be interpreted as representing pseudo-
observations by comparing the forms of p(yn1 |θ) and p(θ). In particular, ν plays the same role as t(yn1 ) and
m represents the number of pseudo-observations.

Example 3.15. The likelihood for a Bernoulli observation is

p(yi|θ) = θyi(1− θ)1−yi (3.83)
= exp(yi ln θ + (1− yi) ln(1− θ)) (3.84)

= exp

(
yi ln

θ

1− θ + ln(1− θ)
)
. (3.85)

We thus let a(yi) = yi, b(θ) = ln θ
1−θ , and g(θ) = ln(1 − θ). Furthermore, let y = t(yn1 ) =

∑n
i=1 a(yi) =∑n

i=1 yi. Then,

p(yn1 |θ) = exp

(
y ln

θ

1− θ + n ln(1− θ)
)

(3.86)

p(θ) = exp

(
ν ln

θ

1− θ +m ln(1− θ)
)

(3.87)

= θν(1− θ)m−ν , Beta(ν + 1,m− ν + 1) (3.88)

p(θ|yn1 ) = exp

(
(ν + y) ln

θ

1− θ + (m+ n) ln(1− θ)
)
, (3.89)

Beta(ν + y + 1,m+ n− ν − y + 1) (3.90)

△

Farzad Farnoud 52 University of Virginia



Chapter 4

Multivariate Random Variables

In this chapter, we will review some topics related to random vectors, which will be of use in the following
chapters.

4.1 Gaussian Random Vectors (Multivariate Normal Distribution)
Recall that a random variable X is Gaussian (normal) with mean µ and variance σ2 > 0 if the pdf of X is
given by

pX(x) =
1√
2πσ2

exp− (x− µ)2
2σ2

. (4.1)

Definition 4.1. A collection of random variables is jointly Gaussian if any linear combination of these
variables is Gaussian. A Gaussian random vector, also known as a multivariate normal vector, is a vector
whose elements are jointly Gaussian. A collection of random vectors is jointly Gaussian if the vector obtained
by concatenating them is jointly Gaussian.

Example 4.2. If
(
X
Y

)
is a Gaussian vector, then Z = 2X + 3Y is Gaussian. Furthermore,

E[Z] = 2E[X] + 3E[Y ], (4.2)
Var(Z) = Cov(2X + 3Y, 2X + 3Y ) = 4Cov(X,X) + 12Cov(X,Y ) + 9Cov(Y, Y ) (4.3)

= 4Var(X) + 12Cov(X,Y ) + 9Var(Y ), (4.4)

which completely characterizes the distribution of Z as Z ∼ N (E[Z],Var(Z)). △

For a Gaussian random vector X of dimension d, with mean E[X] = µ and covariance matrix K = Cov(X) =
E[(X − µ)(X − µ)T ], we have

pX(x) =
1

(2π)d/2|K|1/2 exp

(
−1

2
(x− µ)TK−1(x− µ)

)
, (4.5)

provided that the covariance matrix is invertible.

The elements of X are independent if and only if the covariance matrix is diagonal.

4.1.1 Maximum likelihood estimation
Consider a d-dimensional random vector X = (X1, . . . , Xd) with distribution N (θ∗,K∗) given in (4.5),
where θ∗,K∗ are unknown. Suppose we are interested in the relationship between Xd and X1, . . . , Xd−1. For
example, for XT = (X1, X2, X3), X1 and X2 could indicate the heights of the parents and X3 could be the

53



EPL Chapter 4. Multivariate Random Variables

height of the child. We may, for example, be interested in finding E[Xd|X1, . . . , Xd−1], thus estimating Xd

based on X1, . . . , Xd−1. If we find the distribution, in other words, θ∗,K∗, we can do so. Furthermore, the
matrix K∗ can indicate which dimensions are more strongly correlated.

Consider a set of n iid samples D = {x1,x2, . . . ,xn}, where each xi is a sample of X. We denote the
elements of xi as xi = (xi1, . . . , xid).

To estimate θ∗ and K∗, we write

ℓ(θ,K) = ln p(D;θ,K) =
n∑

i=1

ln p(xi;θ,K) (4.6)

.
=
n

2
ln |K−1| − 1

2

n∑
i=1

(xi − θ)TK−1(xi − θ), (4.7)

where we have used the fact that |K−1| = 1
|K| .

As seen in the appendix (last chapter), for a symmetric matrix A, we have d
dv (y

TAy) = 2yTAdy
dv . Hence,

∂ℓ

∂θ
= −1

2

n∑
i=1

2(xi − θ)TK−1(−I) =
n∑

i=1

(xi − θ)TK−1. (4.8)

Setting this equal to zero yields

θ̂ML = x̄ =
1

n

n∑
i=1

xi. (4.9)

Exercise 4.3. Using the facts

∂

∂A
xTAx = xxT ,

∂

∂A
ln |A| = A−T (4.10)

prove that

K̂ML =
1

n

n∑
i=1

(xi − x̄)(xi − x̄)T (4.11)

△

4.1.2 Bayesian estimation
We now solve the same problem using Bayesian estimation, with the following likelihood

X|Θ ∼ N (Θ,K), (4.12)

p(xn
1 |θ) ∝ exp

(
−1

2

n∑
i=1

(xi − θ)TK−1(xi − θ)

)
, (4.13)

where, for simplicity, we assume K is known and we only need to estimate Θ. As the prior, we choose

Θ ∼ N (µ0,S0) (4.14)

p(θ) ∝ exp

(
−1

2
(θ − µ0)

TS−1
0 (θ − µ0)

)
. (4.15)

Hence,

p(θ|xn
1 ) ∝ exp

(
−1

2
(θ − µ0)

TS−1
0 (θ − µ0)−

1

2

n∑
i=1

(xi − θ)TK−1(xi − θ)

)
. (4.16)
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The exponent in the posterior is quadratic in θ, indicating that Θ has a Gaussian distribution. So Θ|xn
1 ∼

N (θ̂n,Sn), for appropriate choices of θ̂n and Sn,

p(θ|xn
1 ) ∝ exp

(
−1

2
(θ − θ̂n)

TS−1
n (θ − θ̂n)

)
. (4.17)

To find θ̂n and Sn, we equate (4.16) and (4.17), ignoring constant multiplicative factors, which leads to

(θ − µ0)
TS−1

0 (θ − µ0) +

n∑
i=1

(θ − xi)
TK−1(θ − xi)

.
= (θ − θ̂n)

TS−1
n (θ − θ̂n), (4.18)

θTS−1
0 θ − 2θTS−1

0 µ0 + nθTK−1θ − 2θTK−1
n∑

i=1

xi
.
= θTS−1

n θ − 2θTS−1
n θ̂n. (4.19)

Here, we have used the fact that

(a− b)TA(a− b) = aTAa− aTAb− bTAa+ bTAb = aTAa− 2aTAb+ bTAb,

for vectors a, b and a symmetric matrix A. Note that aTAb = bTAa, as both sides are scalars and aTAb =
(aTAb)T = bTAa.

We now collect the terms of the form θTAθ,

θT (S−1
0 + nK−1)θ − 2θT (S−1

0 µ0 + K−1
n∑

i=1

xi)
.
= θTS−1

n θ − 2θTS−1
n θ̂n, (4.20)

leading to the following values for the parameters of the posterior distribution Θ|xn
1 ∼ N (θ̂n,Sn),

S−1
n = S−1

0 + nK−1, (4.21)

θ̂n = Sn(S
−1
0 µ0 + nK−1x̄) (4.22)

= (S−1
0 + nK−1)−1(S−1

0 µ0 + nK−1x̄), (4.23)

where x̄ is
∑n

i=1 xi/n. The posterior mean, θ̂n, which we can also view as a point estimate, is the weighted
average of the prior mean µ0 and what is suggested by the data x̄.

Exercise 4.4. Find θ̂n and S−1
n when S0 = s2I and K = σ2I and interpret the results. △
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Chapter 5

Linear Regression

5.1 Introduction
The goal of regression is to predict a real value y as a function of the input variable x. (The vector x
is referred to as the feature vector, while y is called the target variable.) For example, in a marketing
campaign, we may be interested in predicting total sales, given ad budgets in various platforms based on
prior experience. Our data is a set of pairs D = {(x1, y1), . . . , (xn, yn)}, collected from n prior ad campaigns
for n previous products,

Product TV ads Print ads Web ads Sale

1 xT
1 = $20k $10k $10k y1 = $500k

...
...

...
i xT

i = xi1 xi2 xi3 yi
...

...
...

n xT
n= xn1 xn2 xn3 yn

If we can predict y for any given value of x, we can predict the outcome of a marketing campaign or optimize
the marketing budget.We can also study what types of ads are more helpful, etc.

In linear regression our prediction for y is ŷ = xTθ, where x and θ are elements of Rd. In our marketing
example, our goal becomes to find θ = (θ1, θ2, θ3) such that ŷ = xTθ = θTx = θ1x1 + θ2x2 + θ3x3 is a good
predictor for y.

From a probabilistic standpoint, we may consider each (xi, yi) to be an independent realization of the random
pair (X, Y ) with some joint distribution pX,Y . We then formulate the linear regression problem as follows:
Find

θ̂ = argmin
θ

E[L(Y,XTθ)], (5.1)

for a given loss function L. As we typically do not have the joint distribution for X, Y , we aim to find

θ̂ = argmin
θ

1

n

n∑
i=1

L(yi,x
T
i θ). (5.2)

The linear form, ŷ = xTθ =
∑d

j=1 θjxj , may appear restrictive since it apparently excludes dependence on,
for example, x2j . Imagine, in our marketing example, that buyers are likely to purchase a product if they
see both TV ads and Web ads. In other words, y is large when x1x3 is large. It seems that this case is not
covered well by linear regression. However, this is not the case since we can transform the input variable
using a set of functions g1, . . . , ge and reformulate our assumption as ŷ =

∑e
j=1 θjgj(x), where gj are any
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functions of x, such as x21 and x1x3. (But finding approrpiate fatures is a challenging problem.) Note that
the expression ŷ =

∑e
j=1 θjgj(x) is still linear in θ, which is what matters, since we need to optimize θ.

Notation. Define X ∈ Rn×d and y as

X =

xT
1
...

xT
n

, y =

y1...
yn

 (5.3)

For a given value of θ, we let ŷ = Xθ to be the predicted value. Furthermore, let ϵ be the error vector such
that

y = ŷ + ϵ = Xθ + ϵ. (5.4)

Example 5.1. Suppose

x1 =

(
0
1

)
, x2 =

(
2
0

)
, x3 =

(
1
1

)
, (5.5)

y1 = −1, y2 = 1, y3 = 0. (5.6)

Then

X =

(
0 1
2 0
1 1

)
, ŷ = Xθ = θ1

(
0
2
1

)
+ θ2

(
1
0
1

)
, ϵ = y − ŷ =

(−1− θ2
1− 2θ1
−θ1 − θ2

)
. (5.7)

△

5.2 Least-squares
A common choice for the loss function is

L(yi,x
T
i θ) = (yi − xT

i θ)
2. (5.8)

The empirical risk can be written as

L(θ) =
n∑

i=1

(yi − xT
i θ)

2 = ∥y − Xθ∥22, (5.9)

where we have dropped the 1/n factor present in (5.2) as it does not affect our choice of θ. Denote

θ̂ = argmin
θ
L(θ), (5.10)

and define ŷ = Xθ̂ as the predicted value or estimate based on the model.

Least-squares is relatively easy to deal with from a computational perspective. It also has the same solution
as the MLE for a common probabilistic model as we will see, thus providing an additional rationale for the
resulting approach.

Projection onto the column space of X. Our first observation is that ŷ is in the column space of X,
i.e., it is a linear combination of the columns of X. We can thus restate our goal as finding ŷ in the column
space of X such that ∥y − ŷ∥ is minimized. Hence, ŷ is the projection of y onto the column space of X as
shown in Figure 5.1. Then, from the Projection Lemma in the Appendix, y− ŷ is orthogonal to each column
of X.
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Figure 5.1: Error is minimized by projecting y onto the column space of X, Span(col(X)).

This orthogonality of the error to columns of X can be written as XT (y − ŷ) = 0. We have

XT (y − ŷ) = 0 ⇐⇒ XT (y − Xθ̂) = 0 (5.11)

⇐⇒ XTy = XTXθ̂ (5.12)

⇐⇒ θ̂ = (XTX)−1XTy (5.13)

Here we have assumed that XTX is invertible. This holds if the columns of X are linearly independent. To
see this, we will show XTXα = 0 implies that α = 0 if the columns of X are linearly independent:

XTXα = 0⇒ αTXTXα = 0⇒ (Xα)T (Xα) = 0⇒ Xα = 0⇒ α = 0, (5.14)

where the last step follows from the fact that the columns of X are linearly independent.

Example 5.2. From Example 5.1, we have

X =

(
0 1
2 0
1 1

)
, y =

(−1
1
0

)
, (5.15)

and so

XTX =

(
5 1
1 2

)
, (XTX)−1 =

1

9

(
2 −1
−1 5

)
(5.16)

(XTX)−1XT =
1

9

(
−1 4 1
5 −2 4

)
θ̂ =

(
5/9
−7/9

)
(5.17)

ŷ =

(−7/9
10/9
−2/9

)
, y − ŷ =

(−2/9
−1/9
2/9

)
. (5.18)

△

Gradient descent. The closed-form solution provided in (5.13) for finding θ̂ requires taking matrix in-
verses of possibly very large matrices, which could be computationally expensive. A less expensive solution
is gradient descent, where we take the derivative of the loss to minimize it. Let ∇L(θ) =

(
dL
dθ

)T
be the
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gradient of L. Recall that the direction of the gradient indicates the direction of maximum increase and its
magnitude represents the slope of the increase. We have

L = (y − Xθ)T (y − Xθ), (5.19)

∇L = 2
[
(y − Xθ)T (−X)

]T
= −2XT (y − Xθ). (5.20)

(Setting the gradient equal to 0 again gives θ̂ = (XTX)−1XTy. Note that the Hessian is XTX, which is
positive-semi-definite.) In gradient descent, we start from an arbitrary value θ(0) and move towards the
solution in steps:

θ(t+1) = θ(t) + ρXT (y − Xθ(t)) (5.21)

= θ(t) + ρ

n∑
i=1

xi(yi − xT
i θ

(t)), (5.22)

where ρ is the learning rate. This approach gets to the lowest point by moving in the direction of the steepest
descent as shown in figure below for Example 5.1.

Figure 5.2: Gradient descent for linear regression

Standardization
We sometimes assume that X is standardized, meaning that each column v is shifted and scaled such that
vT1 = 0 and vTv = 1 and that y is centered so that yT1 = 0. Standardization of the inputs puts
different features under the same scale and can help to reduce the correlation between features when having
polynomial/interaction terms. Standardizing inputs can also be shown to be equivalent to minimizing the
squared loss with an intercept term.

Example 5.3 (†). We show that standardizing inputs and then finding the solution with no intercept term
is equivalent to minimizing the squared loss with an intercept term. By including an intercept term, the loss
becomes

L(θ, θ0) =
n∑

i=1

(
yi − xT

i θ − θ0
)2
. (5.23)

Such formulation has the advantage of allowing y to be nonzero when x is zero. Let the solution to this new
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loss formulation be θ̂, θ̂0:

θ̂0, θ̂ = argmin
θ0,θ
L(θ, θ0) (5.24)

and let ŷ = Xθ̂ + θ̂01 be the predictions.

Let the columns of X be v1, . . . ,vm. We provide an analysis that the optimal prediction ŷ found by con-
sidering the intercept term is the same as minimizing the normal squared loss (5.9) over the standardized
inputs X̃ and ỹ:

θ̌ = argmin
θ

n∑
i=1

(
ỹi − x̃T

i θ
)2
, (5.25)

y̌ = X̃θ̌ + ȳ1, (5.26)

where

X̃ =

x̃T
1
...

x̃T
n

 = (ṽ1, . . . , ṽm), ṽj = (vj − βj1)/αj , βj =
1

n

n∑
i=1

vji, αj = ∥vj − βj1∥2, (5.27)

ỹ = y − ȳ1, ȳ =
1

n

n∑
j=1

yj . (5.28)

Let’s first minimize the new loss (5.23). We can fix θ for now. Then, the loss function is quadratic in θ0 and
the optimal choice for θ0 can be found as

θ̂0(θ) = ȳ −
m∑
j=1

βjθj . (5.29)

Substituting θ0 by θ̂0(θ) in the loss (5.23) gives

θ̂ = argmin
θ

n∑
i=1

(yi − xT
i θ − ȳ +

m∑
j=1

βjθj)
2. (5.30)

After rewriting (5.25) as

θ̌ = argmin
θ

n∑
i=1

(ỹi − x̃T
i θ)

2 = argmin
θ

n∑
i=1

(yi − ȳ −
m∑
j=1

(xij − βj)
αj

θj)
2 (5.31)

= argmin
θ

n∑
i=1

(yi −
m∑
j=1

xij
θj
αj
− ȳ +

m∑
j=1

βj
θj
αj

)2, (5.32)

we can observe an analogy between (5.30) and (5.32). It follows that θ̌j = αj θ̂j for all 1 ≤ j ≤ m.

Hence, for all 1 ≤ i ≤ n,

y̌i = x̃T
i θ̌ + ȳ =

m∑
j=1

x̃ij θ̌j + ȳ =

m∑
j=1

(xij − βj)θ̂j + ȳ = xT
i θ̂ + θ̂0 = ŷi, (5.33)

i.e., the predictions we obtained from (5.24) and (5.25) are equal. Note that the second last equality follows
from θ̂0(θ̂) = θ̂0. △
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5.3 Probabilistic Models for Regression
So far we haven’t made any assumptions regarding the statistics of the data. In this section, we consider two
models: i) a model that only characterizes the mean and covariance of the error vector and ii) a Gaussian
model.

5.3.1 General model
Let us now assume that

Y = xTθ∗ + ϵ, E[ϵ] = 0, Var(ϵ) = σ2.

We have n samples (xi, yi). For simplicity, we will assume that xi are deterministic. We will further assume
for any i, j, i ̸= j, ϵi and ϵj are uncorrelated. In vector form, we have

Y = Xθ∗ + ϵ, E[ϵ] = 0, Cov(ϵ) = E[ϵϵT ] = σ2I.

At this point, we are not making any other assumptions related to the distribution of ϵ.1

Frequentist evaluation: Consider the estimator θ̂ = (XTX)−1XTy. Let us investigate the behavior of θ̂
by viewing it as a random variable Θ̂ under this model. We have

E[Θ̂] = E[(XTX)−1XTY ] (5.34)

= (XTX)−1XT E[Y ] (5.35)

= (XTX)−1XT E[Xθ∗ + ϵ] (5.36)
= θ∗, (5.37)

indicating that θ̂ is an unbiased estimate of θ∗. In particular, each dimension is estimated without bias, i.e.,
E[Θ̂i] = θ∗i .

We also find

Cov(Θ̂) = Cov((XTX)−1XTY ) (5.38)

= (XTX)−1XT Cov(Y )X(XTX)−1 (5.39)

= (XTX)−1XT Cov(ϵ)X(XTX)−1 (5.40)

= (XTX)−1σ2. (5.41)

In particular, element i of the diagonal of Cov(Θ̂) is the variance of Θ̂i and also its MSE, as the estimator
is unbiased.

The Gauss-Markov theorem. The Gauss-Markov theorem states that under the assumptions that E[ϵ] =
0 and Cov(ϵ) = σ2I, θ̂ is the best linear unbiased estimator. Here, linear means that θ̂ is linear in y, i.e.,
θ̂ = a1y1 + a2y2 + · · ·+ amym for some scalars am1 . The Gauss-Markov theorem implies that for any2 vector
u, uT θ̂ is an unbiased estimator of uTθ∗ with the smallest possible variance.

5.3.2 Gaussian model
Let us further assume that ϵi are iid, with distribution N (0, σ2), i.e., ϵ ∼ N (0, σ2I). In other words, we
have:

Y = Xθ∗ + ϵ, ϵ ∼ N (0, σ2I) (5.42)
pY (y;θ∗, σ2) ∼ N (Xθ∗, σ2I). (5.43)

1For ϵ, we will not follow the convention that random variables are shown as capital letters since capital ϵ can be confused
with Latin E.

2This isn’t entirely precise!
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Exercise 5.4. Prove that if p(y;θ, σ2) ∼ N (Xθ, σ2I), then for all i, p(yi;θ, σ2) ∼ N (xT
i θ, σ

2) and the yi
are independent. △

Now we have a probabilistic model with unknown parameters θ and σ2.

Maximum Likelihood

Given that the covariance matrix is σ2I and assuming that y is n-dimensional, the density and the likelihood
are

p(y;θ, σ2) =
1

(2πσ2)
n/2

exp

(
− 1

2σ2
(y − Xθ)T (y − Xθ)

)
(5.44)

∝ 1

σn
exp

(
−∥y − Xθ∥22

2σ2

)
(5.45)

ℓ(θ, σ2)
.
= −n ln(σ)− 1

2σ2
∥y − Xθ∥22. (5.46)

So maximizing for θ leads to minimizing ∥y−Xθ∥22 =
∑n

i=1(yi−xT
i θ)

2 which we already know the solution
to:

θ̂ML = θ̂ = (XTX)−1XTy. (5.47)

We can similarly show that

σ̂2
ML =

1

n

n∑
i=1

(yi − xT
i θ̂)

2. (5.48)

The mean and covariance of θ̂ are the same as in §5.3.1. But now we also know that θ̂ is Gaussian. This is
because the linear combination of Gaussian variables is Gaussian. Hence,

θ̂ ∼ N (θ, σ2(XTX)−1). (5.49)

Cramer-Rao Lower Bound. With the additional Gaussian assumption in this section, using Cramer-
Rao lower bound, a stronger result compared to the Gauss-Markov theorem can be obtained. Namely, θ̂ is
the best unbiased estimator (not just the best linear unbiased estimator).

Example 5.5 (†). For an unbiased vector estimator θ̂ of θ, the CRLB has the form

Cov(θ̂) ≽ I−1(θ), (5.50)

where A ≽ B denotes that A−B positive semidefinite. Let us find the CRLB for θ̂ of (5.47). We have

ℓ(θ, σ2)
.
= −n ln(σ)− 1

2σ2
(y − Xθ)T (y − Xθ). (5.51)

∇θℓ =

(
− 1

σ2
(y − Xθ)T (−X)

)T

(5.52)

=
1

σ2
XT (y − Xθ) (5.53)

Hθℓ =
d∇θℓ

dθ
= − 1

σ2
XTX. (5.54)

and so I(θ) = 1
σ2X

TX. Hence, I(θ)−1 = σ2(XTX)−1, which matches the covariance of θ̂ found in (5.41). △
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Bayesian Linear Regression

In Bayesian linear regression, the Gaussian likelihood

y|θ, σ2 ∼ N (Xθ, σ2I) (5.55)

is a common choice. But we also need to choose priors for θ and σ2. A possible non-informative choice is

p(θ, σ2) ∝ 1/σ2, (5.56)

or equivalently, p(σ2) ∝ 1
σ2 , p(θ) ∝ 1 and σ2, and θ are independent.

We are interested in finding
p(θ, σ2|y) = p(θ|σ2,y)p(σ2|y) (5.57)

We start with

p(θ|y, σ2) =
p(θ,y|σ2)

p(y|σ2)
∝ p(θ,y|σ2) = p(y|θ, σ2)p(θ|σ2) ∝ exp

(
− (Xθ − y)T (Xθ − y)

2σ2

)
. (5.58)

Note that in the above expression, we are viewing y and σ2 as given. So the expression p(y|σ2) is treated
as a constant and discarded. Furthermore, p(θ|σ2) = p(θ) ∝ 1.

The right-hand expression in (5.58) is quadratic in θ. So we’ll try to see if we can write it in terms of a
Gaussian distribution. With foresight, let the mean and the covariance of this distribution be denoted θ̂ and
Kσ2. We need

(θ − θ̂)TK−1(θ − θ̂)
.
= (Xθ − y)T (Xθ − y). (5.59)

Ignoring terms that are constant in θ, we require

θTK−1θ − 2θTK−1θ̂
.
= θTXTXθ − 2θTXTy, (5.60)

which is satisfied by K−1 = XTX and

−2θTK−1θ̂ = −2θTXTy, (5.61)

−2θTXTXθ̂ = −2θTXTy, (5.62)

XTXθ̂ = XTy, (5.63)

θ̂ = (XTX)−1XTy. (5.64)

So it suffices to set θ̂ = (XTX)−1XTy and K = (XTX)−1,

p(θ|y, σ2) ∼ N (θ; θ̂,Kσ2). (5.65)

Now we need to find p(σ2|y). Using the fact that p(σ2|y) = p(θ, σ2|y)/p(θ|σ2,y), it can be shown that
p(σ2|y) has a scaled inverse-χ2 distribution,

p(σ2|y) ∼ Inv-χ2(n−m, s2), (5.66)

where m is the dimension of xi and

s2 =
1

n−m (y − Xθ̂)T (y − Xθ̂). (5.67)

While we can continue analytically and find p(θ|y), in practice, we proceed computationally by generating
samples from p(σ2|y) and then p(θ|y, σ2). With this sampling approach we can also perform prediction for
a given input vector xn+1 of by producing samples from p(yn+1|θ, σ2) ∼ N (xT

n+1θ, σ
2).
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5.4 Regularized Linear Regression
Sometimes we are interested in reducing the flexibility of the model to avoid over-fitting, especially when the
size of the data set is small. Alternatively, we may be interested in putting restrictions (e.g., forcing small
coefficients to become 0) so that only the most important aspects of the data appear in the learned model,
thus increasing its interpretability. These can be done by altering the loss function by adding a regularization
term.

Ridge Regression
Ridge regression adds a penalty for the magnitude of the coefficients. Specifically, the loss function is

L(θ) = ∥y − Xθ∥22 + λ∥θ∥22, (5.68)

where λ is a parameter determining the relative importance of the square error versus the regularization loss
term ∥θ∥22. The problem of minimizing this loss,

θ̂ = argmin
θ
∥y − Xθ∥22 + λ∥θ∥22, (5.69)

can be shown to be equivalent to

θ̂ = argmin
θ
∥y − Xθ∥22, (5.70)

subject to : ∥θ∥22 ≤ t, (5.71)

for some t. There is a one-to-one correspondence between λ and t. The second form is perhaps easier to
understand because of the explicit constraints on ∥θ∥22.
From (5.69),

∇L(θ) = −2XT (y − Xθ) + 2λθ, (5.72)

∇L(θ̂) = 0 ⇐⇒ XT (y − Xθ̂) = λθ̂ (5.73)

⇐⇒ θ̂ = (XTX+ λI)−1XTy. (5.74)

Exercise 5.6. Prove that for λ > 0, XTX + λI is invertible, even if the columns of X are not linearly
independent. △

Bayesian Interpretation

We will now view the regularization penalty from a Bayesian point of view. As before, assume the Gaussian
likelihood

y|θ, σ2 ∼ N (Xθ, σ2I). (5.75)

For simplicity, we focus on estimating only θ and not σ2. For the prior on θ, let

p(θ|σ2) ∼ N (0, (σ2/λ)I) ∝ e−λθT θ
2σ2 . (5.76)

Then

p(θ|y, σ2) ∝ p(y|θ, σ2)p(θ|σ2) ∝ exp

(
− (Xθ − y)T (Xθ − y) + λθTθ

2σ2

)
. (5.77)

Based on the previous discussion, it is immediately clear that the mode of the posterior distribution for θ
is (XTX+ λI)−1XTy. Furthermore, since the distribution is quadratic, and hence Gaussian, this is also the
mean of the posterior. Hence the formulation for ridge regression is equivalent to assuming a zero-mean
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Gaussian distribution for θ, which assigns high prior probabilities to smaller length of θ.

Lasso
In lasso, the regularization penalty has the form of the ℓ1 norm,

∥θ∥1 =

m∑
i=1

|θi|, (5.78)

where m is the length of θ. The problem is to find

θ̂ = argmin
θ
∥y − Xθ∥22 + λ∥θ∥1, (5.79)

or equivalently

θ̂ = argmin
θ
∥y − Xθ∥22, (5.80)

subject to : ∥θ∥1 ≤ t. (5.81)

Lasso does not have a closed form solution but efficient computational methods exist.

From a Bayesian point of view, lasso is equivalent to finding the mode of the posterior for θ assuming the
same model as above but with the double exponential (Laplace) prior

p(θ|σ2) ∝ e−
λ∥θ∥1
2σ2 . (5.82)

Discussion and generalization
In general we could choose the regularization penalty to be of the form3

∥θ∥qq =

m∑
i=1

|θi|q, (5.83)

where m is the length of θ. For q = 1 and q = 2, we get lasso and ridge regression, respectively.

The effect of the regularization can be viewed from a Bayesian framework, by setting the prior

exp

(
− λ

2σ2
∥θ∥qq

)
. (5.84)

The contours for the priors for different values of q are given below.

In all cases, as we get further from the origin, the prior probability drops. But when q is small, the probability
falls slower along the axes, encouraging solutions in which some of the coordinates are small or zero.

3∥θ∥q =
(∑m

i=1 |θi|q
)1/q is called the ℓq-norm of θ.
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5.5 Error analysis and model selection
If our goal is to minimize the square of the prediction error, why would we use a different loss function for
empirical risk minimization, as we did for ridge regression and lasso? How does this choice affect the error?
Given that we have different choices for the form of the model and its parameters, how do we choose?

5.5.1 Bias-variance trade-off for quadratic error
Let us consider a general regression problem where we want to predict a value Y given an input vector x.
Let the prediction/estimate ŷ for Y given x be denoted by ŷ = f(x), where f is the function predicting Y
given x. For linear regression this is of the form f(x) = xT θ̂, so finding the predictor is the same as finding
θ̂.

For a specific estimator f (e.g., one found based on a given data set {(x1, y1), . . . , (xn, yn)}), the expected
value of the quadratic loss for the next data point is

L(f) = E
[
(Y − f(X))2|X = x

]
(5.85)

= E
[
(Y − f(x))2|X = x

]
, (5.86)

which is called the test error for x. We can view this as the loss for the n+ 1st data point, where we are
given x = xn+1 and are interested in the loss of predicting Yn+1. So, we are interested in evaluating f for a
given input. For instance, in our marketing example from the beginning of the chapter, xn+1 would indicate
a specific budget, e.g., xn+1 = ($10k, $20k, $5k).

Let ȳ(x) = E[Y |X = x]. Then, using the fact that E[(Z − c)2] = Var(Z) + (E[Z]− c)2, we have

L(f) = E
[
(Y − f(x))2|X = x

]
(5.87)

= Var(Y |X = x) + (ȳ(x)− f(x))2. (5.88)

Note that the error has two parts: an irreducible part, referred to as intrinsic error, which is not under our
control, and a part that depends on the choice of the predictor. The intrinsic error results from the noise
in “nature,” i.e., the fact that X does not have enough information to fully determine Y . In other words,
this term can be viewed as the accumulated effect of all factors that are not included in X. Having a larger
dataset or choosing a better f does not affect this term. The reducible part compares the performance of our
predictor with the best possible. This error is minimized by setting f(x) = ȳ(x) = E[Y |X = x]. However,
doing so exactly is only possible if we have the distribution or an infinite amount of data.

To summarize, we can write the test error for given f and x as

L(f) = irred. + (f(x)− ȳ(x))2. (5.89)

We should choose f to minimize the above quantity. Let us consider how f is chosen through empirical risk
minimization.

1. Determine a set F from which f can be chosen, e.g., all linear functions.

2. Define an empirical loss. Typically, this reflects the loss function in the expected loss (5.86), but may
include a regularization term, i.e.,

∑n
i=1(yi − f(xi))

2 + Reg.

3. Collect data, D = {(x1, y1), . . . , (xn, yn)}, and find f ∈ F that minimizes the empirical loss.

Consider a thought experiment in which this process is repeated many times. In each trial, the set F and
the definition of the empirical loss stay the same, while D and consequently, f are random. Since f is a
function of D, let us denote it as fD. LetM denote the fixed components of this process, i.e., the set F and
the definition of the empirical loss. We are interested to find the loss as a function ofM, which is under our
control, averaged over all possible datasets (which is outside our control). This is called the expected test
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error

L(M) = E[L(fD)] = irred. + E
[
(fD(x)− ȳ(x))2

]
, (5.90)

where the expectation is taken over all possible datasets. Note that the irreducible part, Var(y|x) is a
constant.With a similar trick as above, we have

L(M)− irred. = E
[
(fD(x)− ȳ(x))2

]
(5.91)

= E
[
(fD(x)− E fD(x))2

]
+ (E fD(x)− ȳ(x))2, (5.92)

where the last equality follows from the fact that E fD(x) and ȳ(x) are constants for a given x. The first
term on the last line is the square of the bias and the second term is the variance of fD(x). So

L(M) = irred. + (bias)2 + variance (5.93)

Now, the loss is written as the sum of squared bias term, which compares the average prediction across all
possible datasets with the best possible predictor, and a variance term, which quantifies how different the
estimate for each dataset is from the average, across all datasets.

Typically, as model complexity/flexibility4 increases, bias decreases, while variance increases, since it has
more freedom to vary based on the dataset. Simple/rigid models on the other hand typically have high bias
and low variance. The bottom line is that neither unbiased models nor low variance predictors are necessary
the best in terms of minimizing prediction error.

Another factor that affects the error is the size of the data. In many situations, the size of the data does
affect the bias term but it may not significant since this term is averaged over data sets. The variance terms
is affected because with more data, we get more information, approaching the situation in which p(y|x) is
known. So for very large datasets, the prediction reflects the distribution, which is constant.

5.5.2 Model Selection
As discussed above, the complexity of the model can affect the error. How can we choose the best model? In
the past, we have used minimizing the empirical risk (training error) to optimize the parameters of a model.
Can we again use the same strategy?

The training error for a given predictor f , i.e.,

1

n

∑
L(yi, f(xi)). (5.94)

The training error itself is difficult to study. Averaged over all datasets, the expected training error is

1

n

∑
E[L(Yi, fD(xi))], (5.95)

where for simplicity, we have assumed that that the xi are fixed.

A typically behavior is in the table below, (this is not universally true). Training error is usually smaller for
more complex models but this is not necessarily true for the test error. This makes choosing the best model
based on training error difficult.

Expected
Train Err

Expected Test Err
Irred. Bias2 Var. Total

More complex model ↓ − ↓ ↑ ?
More data ↑ − ↓ ↓ ↓

4By flexibility, I mean its responsiveness to changes in the data, i.e., the extent to which the results change when data
changes.
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5.5.2.1 Overfitting and Underfitting

Suppose the true relationship between two scalar variables x and Y is

y = ax+ w, w ∼ N (0, σ2). (5.96)

We assume that σ < ax for typical values of x since otherwise, we cannot predict Y accurately even if a is
known (the irreducible error is large relative to the best predicted value).

The data available to us consists of two points

D = {(x1 = 1, y1), (x2 = 2, y2)}. (5.97)

We consider predictors of the forms

• ŷ(x) = 0,

• ŷ(x) = θx,

• ŷ(x) = θ1x+ θ2x
2.

For each predictor, we will find the parameter values (θ, θ1, θ2) that minimize the square loss for our data,

1

2

[
(y1 − ŷ(x1))2 + (y2 − ŷ(x2))2

]
. (5.98)

For the third predictor, we will also consider the regularized version with loss

1

2

[
(y1 − ŷ(x1))2 + (y2 − ŷ(x2))2

]
+ bθ22, (5.99)

where b is a constant. Here, I chose the form bθ22 instead of the ℓ2 norm, b(θ21+θ22) to simplify the derivation.
We will still be able to see the effect of regularization.

We then find the expected error for the training data and for a test data point (x3, y3), where we assume
x3 = 3. The expectation is taken over the randomness in y1, y2, y3. The results are given in the table below.

Prediction
Expected

Train Err

Expected Test Error for x3 = 3

Irr. Bias2 Var. Total

ŷ(x) = 0 5a2

2 + σ2 σ2 9a2 0 9a2 + σ2

ŷ(x) = y1+2y2

5 x σ2

2 σ2 0 9
5σ

2 14
5 σ

2

ŷ(x) = 4y1−y2

2 x− 2y1−y2

2 x2 0 σ2 0 18σ2 19σ2

ŷ(x) = b(y1+2y2)+8y1−2y2

5b+4 x

− 4y1−2y2

5b+4 x2

σ2

2

(
1− 1

5b/4+1

)2
σ2 0 9σ2

5

(
1 + 9

(5b/4+1)2

)
σ2

5

(
14 + 81

(5b/4+1)2

)
As we go down the table, the model complexity increases. This allows the model to fit the training data
better, leading to smaller expected training (square) error. The irreducible component of the test error stays
the same, regardless of the model. The prediction bias for the test data point decreases, while its variance
increases.

Given the assumption that σ is small relative to a, the smallest total error is obtained by the middle predictor.
The zero predictor is not complex enough to be able to fit even the training data well. This situation is
referred to as underfitting. The quadratic predictor is so complex that it can fit the training data, including
the noise in the data, perfectly. But it does not generalize well due to its susceptibility to noise and high
variance. This is called overfitting. In other words, the model memorizes this specific dataset rather than
looking for patterns in it.

For the predictor with regularization, the graph below shows how the training and test errors change as a
function of b. In this case, the predictor without regularization is overfitting the data. As b increases, over-
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fitting decreases and we obtain a better test error. Note however that here the specific form of regularization
prevents underfitting for large b, something that may occur in practice.
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It is important to note models could perform poorly for reasons other than over- and under-fitting. For
example, if the true distribution of the data is y = a sinx+w, no polynomial predictor will perform well for
a wide range of inputs due to the poor match between the true distribution and the learning model.

5.5.2.2 Training, validation, and test sets

In the previous subsection, we could identify the best model because we knew the true model for (x, y), which
nature uses to produce them. In practice, however, the true model is not known and we cannot compute the
expected test error. We have also seen that the training error is not necessarily a good estimate for the test
error.

If we have sufficient data, a good solution is to divide it into three parts, a training set, a validation set,
and a test set. For each model, the training set is used to optimize its parameters. Then all optimized
models are evaluated on the validation set. Since the validation set is not used in training, this reduces the
risk of over-fitting and, so, the errors for the validation set are better estimates for the test error. We choose
the best model based on the validation set. We perform a final assessment using the test set, which should
provide a good estimate of the error of the selected model for future practical use. Note that the test set
cannot be used for any other purpose. If it is used in training or validation, it will not provide a reliable
estimate of the error in the wild.

Example 5.7 (Regularization bias-variance trade-off). Regularization allows us to control the flexibility of
the model. In ridge regression as λ increases, the model becomes more constrained. For λ > 0 it can be
shown to be biased. With D = (X,y),

E[ŷn+1] = E[xT
n+1θ̂] (5.100)

= xT
n+1(X

TX+ λI)−1XT E[y] (5.101)

= xT
n+1(X

TX+ λI)−1XTXθ. (5.102)

Noting that E[yn+1] = xT
n+1θ, we see that the estimate of ŷn+1 is biased. In particular, if XTX = I, then

E[ŷn+1] =
xT
n+1θ

1 + λ
< xT

n+1θ = E[yn+1]. (5.103)

But it can be shown to have lower variance. If the choice of λ is appropriate, it will have a smaller total
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loss. △

5.6 Stochastic Gradient Descent
Even though that gradient descent is sometimes less computationally expensive than directly finding the
solution, its cost may still be high. In such cases, using stochastic gradient descent (SGD) may be helpful.
SGD tries to improve the estimate by considering one data point (or a small batch of data points) at a time.

First, let’s consider finding the root of a function f(θ) with a simple method. We assume that f(θ) is
bounded and there is a unique root θ∗ such that f is increasing at θ∗.

Suppose that we start from a point θ(0) that is appropriately close to θ∗. We proceed iteratively as

θ(t+1) = θ(t) − atf(θ(t)), (5.104)

where at satisfies
∞∑
t=1

at =∞,
∞∑
t=1

a2t <∞. (5.105)

For example, at = 1/t is a good choice while at = 1/t2 isn’t. It can then be shown that θ(t) converges to θ∗.

But what if we cannot compute f(θ) but instead we have access to a noisy version F (θ) that satisfies
f(θ) = E[F (θ)], where F (θ) is bounded. It turns out that if we let

θ(t+1) = θ(t) − atF (θ(t)), (5.106)

where in each iteration we sample F (θ), then θ(t) again converges to θ∗.

Now let us consider the loss function for linear regression (note that we are using the expected loss as opposed
to empirical loss)

L(θ) = E[(y − xTθ)2], (5.107)

where we are also assuming that x is random with some distribution. To minimize this loss, we compute the
gradient:

∇L(θ) = E[−2(y − xTθ)x] (5.108)

We would like to find θ such that the gradient above is zero.

Let

f(θ) = E[−2(y − xTθ)x] (5.109)

F (θ) = −2(y − xTθ)x, (5.110)

so that f(θ) = E[F (θ)]. Now the elements of the data set {(x1, y1), . . . , (xn, yn)} can be used to produce
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samples for F (θ). So we let
θ(t+1) = θ(t) + at(yi − xT

i θ
(t))xi, (5.111)

which is the stochastic gradient descent algorithm for linear regression.
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Chapter 6

Linear Classification

In a classification problem, we have an input vector x together with a corresponding label y. Based on a
data set {(x1, y1), (x2, y2), . . . , (xn, yn)}, our goal is to predict y given a new value for x. If y is a continuous
variable the problem is that of regression, whereas in classification problems, y will represent a set of discrete
class labels. For example, we may wish to classify images of handwritten digits. In this case, x is a vector
providing the values of pixels of the image and y ∈ {0, 1, . . . , 9} is the label indicating what digit the image
represents.

6.1 Overview of probabilistic models
The probabilistic approach to classification requires us to learn the distribution p(y|x), which for any given
x provides the probability of belonging to different classes. We can identify the class for a given x as the
class that has the maximum probability,

ŷ(x) = argmax
j
p(y = j|x).

This choice minimizes the probability of predicting the wrong class

L = Pr(ŷ(x) ̸= Y ) = E[I(Y ̸= ŷ(x))].

To find the distribution p(y|x), our first step is developing a model that relates x and y. There are two
possible approaches.

We may develop a generative model, i.e., a model that is capable of generating data and also helping us
predict y for a given x. A generative model has two components, both of which must be learned from data:

• Prior class probabilities: p(y)

• Class-conditional probabilities: p(x|y)
From these, using Bayes’ theorem we can find p(y|x) as

p(y|x) = p(y)p(x|y)
p(x)

∝ p(y)p(x|y).

We can often estimate p(y = j) simply by computing the fraction of class j in our training data. For p(x|y),
a common approach is to represent it parametrically and then learn the parameters from the data. For
example, we may assume that given class j, x is distributed normally with mean µj and covariance matrix
Kj and then learn these parameters from data.

Alternatively, we can develop a discriminative model. In this case, we directly model p(y|x) since this is
the distribution that we need to decide which class x belongs to.
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6.2 Generative Probabilistic Models

6.2.1 Gaussian Class-Conditionals
Let us denote

p(Y = j) = πj .

We further assume p(x|Y = j) is Gaussian with mean µj and covariance matrix Σj ,

p(x|Y = j) =
1√

2π|Σj |
exp

(
−1

2
(x− µj)

TΣ−1
j (x− µj)

)
For our purpose, it suffices to consider ln p(x|y = j), which, after dropping the constant terms, becomes

ln p(x|Y = j)
.
= −1

2
ln |Σj | −

1

2
(x− µj)

TΣ−1
j (x− µj).

From these, we can find ln p(y = j|x) and then decide ŷ(x) as

ŷ(x) = argmax
j

ln p(y = j|x).

More specifically,

ln p(y = j|x) .= lnπj −
1

2
ln |Σj | −

1

2
(x− µj)

TΣ−1
j (x− µj)

= xT

(
−1

2
Σ−1

j

)
x+

(
µT

j Σ
−1
j

)
x+

(
−1

2
µT

j Σ
−1
j µj −

1

2
ln |Σj |+ lnπj

)
(6.1)

= xTAjx+ βT
j x+ γj ,

For an appropriately defined symmetric matrix Aj , vector βj , and scalar γj . In the next two sections, we
will consider two cases based on whether the covariance matrix depends on the class.

6.2.2 Linear Discriminant Analysis
First, let us suppose all classes have the same covariance matrix Σj = Σ. Then, the terms xT

(
− 1

2Σ
−1
)
x

and − 1
2 ln |Σj | in (6.1) become independent of the class and we thus have

ln p(y = j|x) .= βT
j x+ γj , (6.2)

where
βT
j = µT

j Σ
−1, γj = −

1

2
µT

j Σ
−1µj + lnπj ,

Suppose we have only two classes, y = 0 and y = 1, with p(y = 1) = π = 1− p(y = 0). Equivalent to finding
argmaxj ln p(y = j|x) for each x, we can divide the space into two regions,

ln p(y = 1|x)
ŷ=1

≷
ŷ=0

ln p(y = 0|x).

What is the decision boundary between them? We can find it by solving ln p(y = 1|x) = ln p(y = 0|x),

βT
1 x+ γ1 = βT

0 x+ γ0 ⇐⇒ (β1 − β0)
Tx+ γ1 − γ0 = 0 ⇐⇒ βTx+ γ = 0,

where
βT = (µ1 − µ0)

TΣ−1, γ = ln
π

1− π −
1

2
(µ1 − µ0)

TΣ−1(µ1 + µ0). (6.3)

Hence, the decision boundary is the hyperplane βTx+ γ = 0. On one side of this plane, we predict class 1

Farzad Farnoud 73 University of Virginia



EPL Chapter 6. Linear Classification

-2 -1 0 1 2 3 4 5 6
-3

-2

-1

0

1

2

3

4
 LDA and QDA for Classes with Same Covariance

QDA Decision Boundary
LDA Decision Boundary

-2 -1 0 1 2 3 4 5 6
-3

-2

-1

0

1

2

3

4
 LDA and QDA for Classes with Different Covariances

QDA Decision Boundary
LDA Decision Boundary

Figure 6.1: LDA vs QDA for when Σ1 = Σ2 (left) and when Σ1 ̸= Σ2 (right).

(we let ŷ(x) = 1) and on the other side, we declare class 0:

ŷ(x) =

{
1, βTx+ γ > 0

0, βTx+ γ < 0

Since the boundary is linear (i.e., a hyperplane such as a line, 2-D plane, etc), this method is called Linear
Discriminant Analysis (LDA).

As a special case, consider, π = 1
2 ,Σ = I. The the boundary becomes

(µ1 − µ0)
T

(
x− µ1 + µ0

2

)
= 0,

which implies that the boundary is the plane that passes through the midpoint of the line connecting µ1

and µ0 and is perpendicular to it.

What about the probability p(y|x) of each class for a given x, which can tell us about the certainty of
belonging to each class? From (6.2), we have p(y = j|x) ∝ eβT

j x+γj and so for two classes

p(y = 1|x) = eβ
T
1 x+γ1

eβ
T
1 x+γ1 + eβ

T
0 x+γ0

=
1

1 + e−(βTx+γ)
= σ(βTx+ γ),

where β and γ are given in (6.3), and σ(u) = 1
1+e−u is the sigmoid (logistic) function.

If there are c > 2 classes, decision hyperplanes between pairs of classes will divide the space into c regions.
And the conditional probability of class j is given by

p(y = j|x) = eβ
T
j x+γj∑c

k=1 e
βT

k x+γk
= σj(β

T
1 x+ γ1, . . . ,β

T
c x+ γc),

where σj(v) = evj∑
k evk is the softmax function.
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6.2.3 Quadratic Discriminant Analysis
Let us now assume that each class has a different covariance matrix Σj . To decide between two classes,
say y = 0 and y = 1, the decision boundary is given by ln p(y = 1|x) = ln p(y = 0|x). This will lead to a
quadratic equation of the form xTAx + βTx + γ = 0, which leads to a nonlinear decision boundary. As a
result, this method is called Quadratic Discriminant Analysis (QDA).

Figure 6.1 demonstrates LDA and QDA when Σ1 = Σ2 (left) and when Σ1 ̸= Σ2 (right). Here the boundaries
are learned from data (see Section 6.2.2). On the left the data is generated by distributions that match the
assumption made by LDA and so LDA and QDA perform similarly. However, on the right the covariances
are different and so, as expected, QDA performs better. Note however that we could augment our feature
vectors as (x1, x2, x1x2, x

2
1, x

2
2) instead of just (x1, x2) and then apply LDA, allowing a decision boundary

that is not linear in x1, x2. In that case, the performance of LDA would generally be similar to that of QDA
(Hastie et al,. Elements of Statistical Learning).

6.2.4 Maximum Likelihood Solution to LDA
Once we specified a parametric form for the class-conditional densities p(x|y = j), we can determine the
values of the parameters, together with the prior class probabilities p(y = j), using maximum likelihood.

Data: Our data set comprises of observations of x along with their corresponding class labels. Let the n
independent samples be denoted by D = {(x1, y1), (x2, y2), . . . , (xn, yn)}, where xi ∈ Rm and yi ∈ {0, 1} for
all i.

Model:

p(y = j) =

{
π, j = 1

1− π, j = 0

p(x|y = 0) ∼ N (µ0,Σ),

p(x|y = 1) ∼ N (µ1,Σ),

for some π,µ0,µ1 and diagonal matrix Σ = diag(σ2
1 , σ

2
2 , . . . , σ

2
m). The diagonal covariance matrix implies

conditional independence among the elements of x. That is, for a given data point (xi, yi), depending on
the value of yi, we have one of the following cases

p(xi|yi = 0) =

m∏
j=1

p(xij |yi = 0) =

m∏
j=1

1√
2πσ2

j

exp

(
−(xij − µ0j)

2

2σ2
j

)
(6.4)

p(xi|yi = 1) =

m∏
j=1

p(xij |yi = 1) =

m∏
j=1

1√
2πσ2

j

exp

(
−(xij − µ1j)

2

2σ2
j

)
(6.5)

Note that since we assume both classes have the same covariance matrix, the decision boundary will be linear
(i.e., LDA). Also, we have assumed given the class, features are independent (since Σ is diagonal); this is
called the Naive Bayes model.
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Likelihood:

p(D|π,µ0,µ1,Σ) =

n∏
i=1

p(yi)p(xi|yi)

=

 ∏
i:yi=0

p(yi = 0)p(xi|yi = 0)

 ∏
i:yi=1

p(yi = 1)p(xi|yi = 1)


=

 ∏
i:yi=0

(1− π)
m∏
j=1

1√
2πσ2

j

exp

(
−(xij − µ0j)

2

2σ2
j

) ∏
i:yi=1

π

m∏
j=1

1√
2πσ2

j

exp

(
−(xij − µ1j)

2

2σ2
j

),
where xi,j is the jth component of xi and µ0,j , µ1,j are the jth components of µ0 and µ1, respectively. The
maximum likelihood solution is (exercise)

π̂ML =

∑
yi
n

,

(µ̂0,j)ML =

∑
i:yi=0 xi,j∑
(1− yi)

, (µ̂1,j)ML =

∑
i:yi=1 xi,j∑

yi
,

(σ̂2
j )ML =

1

n

 ∑
i:yi=0

(xi,j − µ̂0,j)
2 +

∑
i:yi=1

(xi,j − µ̂1,j)
2


6.2.5 Generative Model for Discrete Features **
If a features is categorical, for example, type of a vehicle or genre of a movie, we can encode them as binary
vectors. For example, if there are three categories, with the vector (1, 0, 0) we can indicate belonging to
the first category. This is called one-hot or dummy encoding. In this case, our data is still denoted by
(x1, y1), . . . , (xn, yn), where each xi is composed of vectors, that is1

xi = (xi1, . . . ,xim),

and each xij = (xij1, . . . , xijl, . . .) is a binary vector of finite length which represents a one-hot encoding of
a feature.

Example 6.1 (One-hot encoding). Suppose x1,x2, . . . ,xm provide information about a set of movies, where
x1 = (x11, . . . ,x1m),x2 = (x21, . . . ,x2m), . . ., with x1,x2, . . . ,xm denoting in order the genre of the movie,
the director of the movie, etc. Explicitly, for the genre, if we order them as (comedy, horror, drama, scifi, action),
and for five directors A,B,C,D,E, order them as (A,B,C,D,E), then x11 = (0, 0, 1, 0, 0),x12 = (0, 0, 0, 1, 0)
means movie 1 is a drama directed by director D, and x21 = (1, 0, 0, 0, 0),x22 = (1, 0, 0, 0, 0) means that
movie 2 is a comedy directed by director A. △

Model: We model this classification problem in the following way:

p(xijl = 1|yi = k) = ηkjl,
∑
l

ηkjl = 1,

and all xijl are independent from one another. For two vectors a, b with the same length, we define ab =∏|a|
i=1 a

bi
i . Let ηkj = (ηkj1, . . .). We have

p(xij |yi = k) = η
xij

kj ,

1All vectors in this section are column vectors and all concatenations are also along the vertical dimension. However, for
simplicity of notation, we write xi = (xi1, . . . ,xim) instead of xT

i = (xT
i1, . . . ,x

T
im)T
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and then

p(xi|yi = k) =

m∏
j=1

p(xij |yi = k) =

m∏
j=1

η
xij

kj = ηxi

k ,

where ηk = (ηk1, . . . ,ηkm). It follows that

p(yi = k|xi) ∝ p(xi|yi = k)p(yi = k) = πkη
xi

k ∝ exp(lnπk + xT
i lnηk).

For a new data point (x, y), we similarly have

ln p(y = k|x) .= βT
k x+ γk, (6.6)

where βk = lnηk and γk = lnπk. The log-probabilities are again linear in x, an fact that as we will see
contributes to the motivation for logistic regression.

6.2.6 Class-conditionals from the exponential family
The exponential family of distributions includes common distributions such as Gaussian, exponential, gamma,
beta, Dirichlet, Bernoulli, Poisson, and geometric. Distributions from this family have the following form

p(x|θ) = exp[b(θ)Ta(x) + f(x) + g(θ)].

Let us consider the case in which a(x) = x, and parameters are functions of class y. So instead of θ we
write θj , when considering the jth class. Then the class-conditional distribution will become

p(x|y = j) = exp[b(θj)
Tx+ f(x) + g(θj)].

Furthermore, let p(y = j) = πj . Given x, the log-probability of each class is given as

ln p(y = j|x) .= lnπj + ln p(x|y = j)
.
= lnπj + b(θj)

Tx+ g(θj)
.
= βT

j x+ γj , (6.7)

where βj = b(θj) and γj = lnπj + g(θj). So for a large class of class-conditional probabilities, the log-
probabilities of classes given the feature vector x is linear in x.

6.3 Discriminative Models and Logistic Regression
In the discriminative approach, we model p(y = j|x) directly. But what is a good model for this conditional
distribution? As we have seen in (6.2), (6.6) and (6.7), in many generative cases, the log-probabilities of
classes given data is linear in x,

ln p(y = j|x) .= βT
j x+ γj .

And based on Section 6.2.2, this form leads to linear class boundaries and posterior class probabilities of the
logistic form for two classes,

p(y = 1|x) = 1

1 + e−(βTx+γ)
, p(y = 0|x) = e−(βTx+γ)

1 + e−(βTx+γ)
,

where β = β1 − β2 and γ = γ1 − γ2.
Limiting ourselves to two classes, this observation raises the following question: ‘Why not assume from the
beginning that p(y|x) is of the logistic form and learn this distribution instead of learning first p(x|y) and
p(y)?’ Doing so leads to a discriminative model resulting in logistic regression.

Let h(x) = p(y = 1|x) and assume that the data consists of n iid samples, D = {(x1, y1), . . . , (xn, yn)}. We
have

p(D;β, γ) =
n∏

i=1

h(xi)
yi(1− h(xi))

1−yi
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and the negative log-likelihood loss is given by

−L(β, γ) =
n∑

i=1

(
yi ln

1

h(xi)
+ (1− yi) ln

1

1− h(xi)

)
. (6.8)

We can use gradient descent to minimize this loss (maximize the likelihood). For simplicity, let θ =

(
β
γ

)
,

x̃ =

(
x
1

)
, and hθ = p(y = 1|x) = 1

1+e−θT x̃
. Then

θ(t+1) = θ(t) + ρt∇θL(θ),

where

∇θL(θ) =
n∑

i=1

(yi − hθ(x̃i))x̃i.

When we find θ, and thus β, γ, we have the decision boundary as βTx + γ = 0. Points x for which
βTx+ γ > 0 are classified as class y = 1.

6.4 Risk minimization and loss functions for classification
An alternative approach to generative models and logistic regression we discussed before is directly minimiz-
ing an empirical loss,

1

n

n∑
i=1

L(yi,xi, ŷ(xi)),

where ŷ(x) is the predictor of the class for input vector x. For ease of exposition, instead of assuming
y ∈ {0, 1}, we assume y ∈ {−1, 1}.
Our attention will be limited to linear classifiers, determined by a vector β and a constant γ, which define
the hyperplane βTx+ γ = 0. On one side of the hyperplane, we decide class 1 and the other side class -1,

ŷ(x) = sign(βTx+ γ) =

{
1, if βTx+ γ > 0,

−1, if βTx+ γ < 0,

where the dependence of ŷ on β, γ is implicit.

One such linear classifier is shown in Figure 6.2. Below, we will use the fact that for any point xi with label
yi and prediction ŷ(xi), the loss contributed by it can often be viewed as a function of its signed distance di
to the decision hyperplane. Without loss of generality, assume that yi = 1 and xi = x0 + diβ/∥β∥ for some
x0 on the decision boundary. If di is positive, then this point is classified correctly, since βTxi + γ > 0. The
distance between xi and the decision boundary equals |di|.

6.4.1 Zero-one loss
The most natural loss function for classification is the 0-1 loss,

L01(y, ŷ(x)) =

{
1, if y ̸= ŷ(x)

0, if y = ŷ(x)

}
=

{
1, if y(βTx+ γ) < 0,

0, if y(βTx+ γ) > 0.

Figure 6.3 shows the 0-1 loss for a point in the positive class. Note that how far the point is from the
boundary does not affect how much it contributes to the loss.

Unfortunately, minimizing this loss function is computationally difficult (NP-hard) [1]. So in practice, we use
differentiable loss-functions for which efficient algorithms exist. Here we will consider two such loss functions.
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Figure 6.2: A linear classifier defined by the vector β and scalar γ. Squares represents points with y = +1
and circles y = −1. For a point xi, many loss functions can be viewed as a function of the signed distance
di of xi to the decision hyperplane.

First, we view logistic regression in terms of empirical risk minimization and then we will consider the hinge
loss in the context of support vector machine (SVM) classifiers.

6.4.2 Logistic regression
Let us re-examine the logistic regression loss function (6.8). The loss incurred by a data point xi at signed
distance di from the decision hyperplane (i.e., xi = x0 + diβ/∥β∥) is

ln(1 + e−(βTxi+γ)) = ln(1 + e−di∥β∥).

The figure below shows this loss: For di < 0, where the input is misclassified, the loss is larger, and it
increases as the point gets farther from the boundary. But even for points that are classified correctly, there
is a loss, which decreases as we get farther from the boundary.

6.4.3 Hinge loss (SVM)
Hinge loss results from penalizing misclassified points as well as those that are classified correctly, but are
within a certain margin close to the decision boundary. The expression for hinge loss is

max(0, 1− yi(βTxi + γ)).

Letting yi = 1 and xi = x0 + diβ/∥β∥ as before, results in

max(0, 1− di∥β∥).

which is shown in Figure 6.3. So the penalty for misclassified points is larger the farther away they are from
the boundary. In addition, even points classified correctly are penalized if they are within a margin of width
1/∥β∥ of the decision boundary.

In addition to penalizing points within the margin, we would like to ensure that the margin is not very
small. This can be done by ensuring 1/∥β∥ is large or equivalently ∥β∥2 is small. Both of these goals can
be achieved with the loss

1

n

n∑
i=1

max(0, 1− yi(βTxi + γ)) + λ∥β∥2, (6.9)

where λ is a constant that balances the two components of the loss. This results in the so called support
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Figure 6.3: Loss functions for a data point (xi, yi = 1) as a function of the distance of xi from the boundary
(in terms of the length of β).

vector machine classifier (SVM).

SVM as maximum-margin classifier. Let us consider the case in which the data is linearly separable,
i.e., there exists a hyperplane that correctly classifies all data points. In such a case, as shown in Figure 6.4a,
there are typically an infinite number of separating hyperplanes. This leads to the question of which one
should be chosen. The SVM loss given in (6.9) provides a solution. Assume λ is positive but very small. So
we are primarily concerned about the first term in the loss, i.e., the hinge loss. Between choices that incur
the same hinge loss, we must pick the one that maximizes the margin, i.e., minimizes ∥β∥2. Thus:

• We can make the hinge loss term zero by choosing any separating hyperplane that makes no mistakes
and choosing any margin (length of ∥β∥) that is small enough such that there no points within the
margin.

• Now the second term ensures that among the hyperplanes that perfectly separate the data, we should
pick the one that has the maximum margin, as shown in Fig. 6.4b.

In nonlinear cases, SVM can use “kernel functions” to transform the input space into a higher-dimensional
space where it is easier to find a linear separating hyperplane. This, along with a related computational tech-
nique, is known as the kernel trick, allowing SVM to effectively perform in complex, nonlinear classification
tasks.
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(a) For two linearly separable classes, there are an
infinite number of classifiers that perfectly separate
the training data. Which one should we pick?
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(b) The maximum-margin classifier is the classifier
that maximizes the distance between the decision
boundary and the closest points to it.

Figure 6.4: SVM for separable data
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7.1 Overview
Expectation-maximization (EM) is a method for dealing with missing data/hidden variables. In other words,
part of the variables in the assumed model do not have associated data points. For example, for classification,
the complete data consists of the features x and labels y, as shown in the left panel of Figure 7.1. With a
probabilistic model for this data, we can find the parameters for each class through maximum likelihood,
where the log-likelihood function is

log p(x,y;θ),

where x = (x1, . . . ,xn) and y = (y1, . . . , yn) and θ represents the parameters of class-conditional distribu-
tions for each of the classes.

But what if the class labels are not given as in the right panel of Figure 7.1? The problem becomes more
difficult, but doesn’t seem hopeless as we can still distinguish two clusters and assign points to these with
various degrees of confidence.

Figure 7.1: Data from two classes, with labels given as colors (left) and not given (right).

We thus formulate this problem as finding θ that maximizes

log p(x;θ) = log
∑
y

p(x,y;θ)

In this case, (x,y) is the complete data, for which computing the likelihood is easy, but a component of this
data, namely y, is missing. Now computing the likelihood is difficult because of the summation, which is
typically over a large number of possibilities. Expectation-maximization is a method for handling missing
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Figure 7.2: The log-likelihood of the observation and consecutive EM lower bounds and estimates. In each
iteration, the current value of θ is denoted by ◦ and the new value by ∗. Here, θ(0) = 1, θ(1) = 1.5, θ(2) =
2.04, θ(3) = 2.472. Continuing in the same manner, we would obtain estimates 2.740, 2.880, 2.946, 2.976, . . . ,
where 3 is the true maximum.

data.

EM is an iterative method that given the current estimate for the parameter, finds a new estimate. The idea
behind EM is finding lower bounds on the log-likelihood of the observed data and maximizing these lower
bounds. This is illustrated in Figure 7.2 (see Example 7.1). Suppose our current estimate of θ is θ′. In each
iteration, we find a lower bound B(θ,θ′) on log p(x;θ) that coincides with it at θ = θ′, i.e.,

log p(x;θ) ≥ B(θ,θ′), for all θ,
log p(x;θ) = B(θ,θ′), for θ = θ′.

(7.1)

Now let our new estimate be
θ′′ = argmax

θ
B(θ,θ′).

Note that we have not used log p(x;θ) to find θ′′. Since

log p(x,θ′′) ≥ B(θ′′,θ′) ≥ B(θ′,θ′) ≥ log p(x,θ′),

we have
log p(x;θ′′) ≥ log p(x;θ′).

So our new estimate is at least as good as the old one, and under certain conditions, it is going to be
strictly better. We then use θ′′ in place of θ′ and repeat. Note that if log p(x;θ) is bounded, since the
sequence log p(x;θ′) is non-decreasing, it will converge. Under appropriate conditions, this means that θ′

also converges to a stationary point of p(x;θ). See [1] for details.

It remains to find a lower bound that satisfies (7.1). For any y such that p(y|x;θ) > 0,

ℓ(θ) = ln p(x;θ) = ln
p(x,y;θ)

p(y|x;θ) .
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Then, for any distribution q for the missing data y,

ℓ(θ) =
∑
y

q(y) ln p(x;θ)

=
∑
y

q(y) ln
p(x,y;θ)

p(y|x;θ)

≥
∑
y

q(y) ln
p(x,y;θ)

p(y|x;θ) −D(q(y)||p(y|x;θ))

=
∑
y

q(y) ln
p(x,y;θ)

p(y|x;θ) −
∑
y

q(y) ln
q(y)

p(y|x;θ)

=
∑
y

q(y) ln p(x,y;θ)−
∑
y

q(y) ln q(y),

where for two distribution p1 and p2, D(p1(z)∥p2(z)) is the relative entropy (also called the Kullback–Leibler
divergence or KL divergence) between p1 and p2 defined as∑

z

p1(z) log
p1(z)

p2(z)
.

Relative entropy is a measure of dissimilarity between distributions and can be shown to be non-negative
and is equal to 0 if and only if p1 = p2.

Thus for any distribution q, we have a lower bound on ℓ(θ). Suppose our current guess for θ is θ(t). We
would like this lower bound to be equal to ℓ(θ) at θ = θ(t). For this to occur, we need

D
(
q(y)||p(y|x;θ(t))

)
= 0 ⇐⇒ q(y) = p(y|x;θ(t)),

resulting in

ℓ(θ) ≥
∑
y

p(y|x;θ(t)) ln p(x,y;θ)−
∑
y

p(y|x;θ(t)) ln p(y|x;θ(t)) = B(θ,θ(t)).

Now instead of maximizing ℓ, we can maximize B. We note however that the second term in B is not a
function of θ. So we instead define the following expectation

Q(θ,θ(t)) =
∑
y

p(y|x;θ(t)) ln p(x,y;θ),

and find
θ(t+1) = argmax

θ
Q(θ,θ(t)).

For simplicity of notation, I often use θ′ to denote θ(t) and θ′′ to denote θ(t+1). Also, let E′ be expected
value assuming the value of θ′. We can then describe the EM algorithm as

• The E-step:

Q(θ;θ′) =
∑
y

p(y|x;θ′) ln p(x,y;θ) = E[ln p(x,Y ;θ)|x;θ′] = E′[ln p(x,Y ;θ)|x]

• The M-step:
θ′′ = argmax

θ
Q(θ;θ′).

Update θ′ ← θ′′ and repeat.
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Roughly speaking, EM can be viewed as alternatively finding an estimate for the missing data through
expectation by assuming a value for the parameters (the E-step) and finding a new estimate for the parameter
based on the estimate of the data.

7.2 Clustering with EM
For classification the complete data is {(xi, yi)}ni=1. When the labels yi are missing, the problem becomes
clustering.

We assume Gaussian class-conditionals:

p(Yi = 1) = π, (xi|Yi = 1) ∼ N (µ1,K1)

p(Yi = 0) = 1− π, (xi|Yi = 0) ∼ N (µ0,K0)

Let θ = (π,µ0,µ1,K0,K1). Ideally, we would want to maximize the likelihood for the observed data
{(xi)}ni=1,

ℓ(θ) = ln p(xn
1 |θ) = ln

∑
yn
1

p(xn
1 , y

n
1 |θ).

But this is difficult to do because of a lack of an analytical solution due to the summation. Instead, we can
use a computational method such as EM.

We will proceed as follows:

• Set-up: It is helpful to start with the log-likelihood of the complete data and simplify it before
proceeding to the EM algorithm. We have

ln p(xn
1 , y

n
1 ;θ) =

n∑
i=1

ln p(xi, yi;θ),

and for each term in this sum,

ln p(xi, yi;θ) = ln
(
(πp(xi|Yi = 1;θ))

yi((1− π)p(xi|Yi = 0;θ))
1−yi

)
= yi ln(πp(xi|Yi = 1;θ)) + (1− yi) ln((1− π)p(xi|Yi = 0;θ)).

• The E-step: Let θ′ be the current estimate for θ and let E′ denote expected value operator with
respect to the distribution p(y|x;θ′). We have

Q(θ;θ′) = E′[ln p(xn
1 , Y

n
1 ;θ)|xn

1 ]

= E′

[
n∑

i=1

ln p(xi, Yi;θ)|xn
1

]

=

n∑
i=1

E′[ln p(xi, Yi;θ)|xi]

And for each term in the sum,

E′[ln p(xi, Yi;θ)|xi] = E′[Yi ln(πp(xi|Yi = 1;θ)) + (1− Yi) ln((1− π)p(xi|Yi = 0;θ))|xi]

= E′[Yi|xi] ln(πp(xi|Yi = 1;θ)) + E′[1− Yi|xi] ln((1− π)p(xi|Yi = 0;θ))

= γ′i(lnπ + ln p(xi|Yi = 1;θ)) + (1− γ′i)(ln(1− π) + ln p(xi|Yi = 0;θ)),
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(i) t = 50

Figure 7.3: EM clustering of a mixture of two Gaussian datasets. In (a) the raw data is shown and in (b-i),
steps of the EM algorithm are shown. To compare with the underlying distributions and clusters, the points
from each of the Gaussian distributions are shown with triangles and circles. However, the EM algorithm
does not have access to this data. The contour plots represent the current estimate for the parameters of each
of the Gaussian distributions and the color of each data point represents the estimate of the EM algorithm
for the probability that the point belongs to the clusters (γ′i = p(Yi = 1|xi;θ

′)). A video of the clustering
can be found here.
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where

γ′i = E′[Yi|xi]

= p(Yi = 1|xi;θ
′)

=
p(xi, Yi = 1;θ′)

p(xi, Yi = 1;θ′) + p(xi, Yi = 0;θ′)

=
π′N (xi;µ

′
1,K

′
1)

π′N (xi;µ′
1,K

′
1) + (1− π′)N (xi;µ′

0,K
′
0)
.

Here, γ′i has a significant meaning. It represents the probability that a given point xi belongs to class
1 given the current estimate of the parameters. Instead of computing the likelihood based on a known
value for yi, in the E-step, we compute the likelihood by partially assigning xi to class 1 and to class
0.

• The M-step: To find π′′:

∂Q

∂π
=

n∑
i=1

(
γ′i
π
− 1− γ′i

1− π

)
= 0⇒ π′′ =

∑n
i=1 γ

′
i

n
.

To find µ′′
1 :

∂Q

∂µ1
=

∂

∂µ1

n∑
i=1

γ′i ln p(xi|Yi = 1;θ)

=
∂

∂µ1

n∑
i=1

γ′i

(
−1

2
(xi − µ1)

TK−1
1 (xi − µ1)

)

=

n∑
i=1

γ′iK
−1
1 (xi − µ1) = 0⇒ µ′′

1 =

∑n
i=1 γ

′
ixi∑n

i=1 γ
′
i

.

To find K′′
1 :

∂Q

∂K−1
1

=
∂

∂K−1
1

n∑
i=1

γ′i

(
1

2
ln
∣∣K−1

1

∣∣− 1

2
(xi − µ1)

TK−1
1 (xi − µ1)

)

=
1

2
K1

n∑
i=1

γ′i −
1

2

n∑
i=1

γ′i(xi − µ1)(xi − µ1)
T
= 0

⇒ K′′
1 =

∑n
i=1 γ

′
i(xi − µ′′

1)(xi − µ′′
1)

T∑n
i=1 γ

′
i

.

Several steps of an EM clustering of a dataset are shown in Figure 7.3. In essence, the EM algorithm uses the
current estimates of posterior class probabilities of a point as labels and updates the distributions. Having
updated the distributions, it updates the posterior class probabilities and repeats.

7.3 EM with general missing data **
So far, we have considered problems in which data can be divided into an observed component x and a
hidden component y, with the expectation given by

Q(θ;θ′) =
∑
y

p(y|x;θ′) ln p(x, y;θ)
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But we can use EM to solve a more general class of problems, where this division may not be possible.
Specifically, we assume that the complete data is given by z and the observed data is given by x, where x is
a function of z. In this case, the expectation is given by

Q(θ;θ′) =
∑
z

p(z|x;θ′) ln p(z;θ)

Example 7.1 ([1]). Let

x = s+ ϵ,

s ∼ N (0, θ), θ ≥ 0

ϵ ∼ N (0, σ2) σ2 > 0,

where s and ϵ are independent, σ is known, and θ is unknown. Our goal is to estimate θ. In this case, the
complete data is z = (s, ϵ) and observed data is x = s+ ϵ.

We can solve this problem directly by noting that

x ∼ N (0, θ + σ2),

where we have used
Var(x) = Cov(s+ ϵ, s+ ϵ) = σ2 + θ.

The maximum likelihood estimate for the variance of x is then

θ̂ML =

{
x2 − σ2 if x2 ≥ σ2,

0 if x2 < σ2.

With EM:

• The E-step:

Q(θ; θ′) = E′[ln p(z; θ)|x]
= E′[ln p(s; θ) + ln p(ϵ; θ)|x]
.
= E′[ln p(s; θ)|x]
.
= E′

[
− ln θ

2
− s2

2θ
|x
]

= − ln θ

2
− E′[s2|x]

2θ

• The M-step:

∂Q

∂θ
= − 1

2θ
+

E′[s2|x]
2θ2

= 0⇒ θ′′ = E′[s2|x].

This is a very intuitive result.

With some manipulation (HW), this results in

θ′′ =

(
θ′

θ′ + σ2

)2

x2 +
θ′σ2

θ′ + σ2
.

The plot for the log-likelihood and the EM estimates, starting from θ(0) = 1, is given in Figure 7.2, where
σ2 = and x = 2 and thus θ̂ML = 3. △
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7.4 The MM Algorithm **
The idea behind the EM algorithm, i.e., finding a lower bound with certain properties, can be generalized,
leading to the Minorization-Maximization (MM) algorithm. Specifically, EM provides a certain way of finding
a lower bound, but if we find a lower bound by another method that still satisfies appropriate equality and
inequality conditions, we can still maximize the function we are interested in. We illustrate this by applying
MM to rank aggregation.

7.4.1 Rank Aggregation from Pairwise Comparisons via MM
Rank aggregation refers to combining a set of full or partial rankings of a set of alternatives in order to obtain
a consensus ranking. For example, we may be interested in ranking sport teams based on match results. In
this case, the input data is a set of pairwise comparisons (i.e., a partial ranking involving two items) and the
desired output is a ranking of all the teams.

The data: There are n teams. We are given a dataset D = {w12, w13, . . . , wn−1,n}, where wij is the number
of times team i beats team j. It will be helpful to assume wii = 0 rather than leaving it undefined.

The model: For two teams i and j, we assume

Pr(i beats j) =
esi

esi + esj
,

where si is a score reflecting the strength of team i. Denote s = (s1, . . . , sn).

This leads to the log-likelihood

L(s) =
∑
i,j

wij(si − ln(esi + esj ))

As an aside, note that for a differentiable convex function f(x), we have

f(x) ≥ f(x′) + f ′(x′)(x− x′), for all x′,
f(x) = f(x′) + f ′(x′)(x− x′), for x′ = x.

Since − lnx is a convex function,

− lnx ≥ − lnx′ − x− x′
x′

= − lnx′ − x

x′
+ 1.

Hence, if we define

Q(s, s′) =
∑
i,j

wij

(
si − ln

(
es

′
i + es

′
j

)
− esi + esj

es
′
i + es

′
j

+ 1

)
,

then,

L(s) ≥ Q(s, s′), for all s′,
L(s) = Q(s, s′), for s = s′.

We can simplify Q by ignoring terms that do not involve s, and then separating the parameters (the latter
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was not possible for L)

Q(s, s′) =
∑
i,j

wij

(
si −

esi + esj

es
′
i + es

′
j

)
=
∑
i

si
∑
j

wij −
∑
i

esi
∑
j

wij

es
′
i + es

′
j

−
∑
i

∑
j

wij
esj

es
′
i + es

′
j

=
∑
i

si
∑
j

wij −
∑
i

esi
∑
j

wij

es
′
i + es

′
j

−
∑
i

∑
j

wji
esi

es
′
i + es

′
j

=
∑
i

si
∑
j

wij −
∑
i

esi
∑
j

wij + wji

es
′
i + es

′
j

.

Given the current estimate s′, we can now find the next estimate s′′ by differentiating Q, and setting it equal
to 0,

∂Q

∂si
=
∑
j

wij − esi
∑
j

wij + wji

es
′
i + es

′
j

= 0

s′′i = ln

∑
j wij∑

j
wij+wji

es
′
i+e

s′
j

.

This allows us to estimate the scores si. When convergence is achieved or after a set number of iterations,
we sort the scores and thus find a ranking of the n teams. [1]
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Chapter 8

Basics of Graphical Models

8.1 Introduction
Graphical models (GMs) are used to represent distributions on graphs. They enable us to represent con-
ditional independencies and factorization of distributions facilitate probabilistic inference through message
passing algorithms. There are different types of GMs:

• Bayesian Networks (BN, aka Directed Graphical Models): Natural for representing causal relationships

• Markov Random Fields (MRF, aka Undirected Graphical Models): Suitable for representing co-
influence or non-causal relationships among a subsets of variables, e.g., friendship in social networks
and pixels in an image (adjacent pixels are likely to have similar colors).

• Factor Graphs: A flexible type of GM that can represent distributions represented by BNs and MRFs.

8.2 Bayesian Networks
A Bayesian network is a directed acyclic graph (DAG) with some additional attributes. A DAG is a graph
whose edges have direction and in which there is no cycle if one follows the edges based on their direction.
In a DAG, a parent of a node y is a node x such that there is an edge from x to y. A child of y is a node
z such that y is the parent of z. An ancestor is a parent, parent of a parent, etc., and a descendant is
a child, child of a child, etc. A complete DAG is a DAG such that with an edge between each pair of
vertices. An example of a DAG with four nodes is shown below.

x1 x2

x3 x4

In a Bayesian network represented by a DAG G:

• Nodes x1, . . . , xm represent variables or quantities (can be scalar or vector)

• Edges represent causal relationships
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• The probability distribution over xm1 = x1, . . . , xm can be expressed as:

p(xm1 ) =

m∏
i=1

p(xi|pa(xi))

where pa(xi) are the parents of xi in G, i.e., nodes with an edge to xi.

We then say that the distribution p factorizes with respect to G. For example, for a distribution p that
factorizes with respect to the graph shown above, we have

p(x1, x2, x3, x4) = p(x1)p(x2|x1)p(x3|x1)p(x4|x1, x3). (8.1)

What does (8.1) tell us about the distribution? Recall that based on the chain rule of probability, we always
have

p(x1, x2, x3, x4) = p(x1)p(x2|x1)p(x3|x1, x2)p(x4|x1, x2, x3). (8.2)

It is straightforward to show that (8.1) is equivalent to

p(x3|x1, x2) = p(x3|x1),
p(x4|x1, x2, x3) = p(x4|x1, x3).

(8.3)

These two expressions are conditional independence statements, which we can restate as x3 ⊥⊥ x2 |x1 and
x4 ⊥⊥ x2 |x1, x3. Thus saying that p factorizes with respect to the graph above is equivalent to assuming
(8.3). This is in general true. The set of missing incoming edges for each node in the graph represents a
conditional independence assumption.

The complete graph, shown for four nodes below, represents the factorization given in (8.2), which holds for
any distribution and thus the graph can represent any distribution. But such a graph is not particularly
useful since the power of graphical models results from the independence assumptions that they encode.

x1 x2

x3 x4

Note that the complete graph is acyclic as it imposes an ordering over the nodes (in this case, x1, x2, x3, x4).
We can view any Bayesian network as being obtained from a complete DAG by removing edges. So every
Bayesian network is also acyclic.

Example 8.1. Alice and Bob are employees of a business in Charlottesville, both of whom take 29S to get
to work. We are interested in whether they arrive on time or late. We assume their arrival time is affected
by traffic, which leads to dependence, but there aren’t any other factors that can affect both of them. Let
A = 0 and A = 1 denote Alice being on time and being late A1, respectively and similarly for Bob (B = 0
and B1). Traffic is either normal (T = 0) or heavy (T = 1). We use X0 and X1 as shorthand for X = 0 and
X = 1 for our random variables.

The Bayesian Network that models the probability distribution is shown below.
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T

A B

This graph implies that A ⊥⊥ B|T and that p(ABT ) = p(T )p(A|T )p(B|T ). We now have the structure of
our model. But we still need the conditional probability distributions to complete the model. Suppose
these distributions are as below:

T

P (T0) = 0.65

A B

P (B0|T0) = 0.82
P (B0|T1) = 0.15

P (A0|T0) = 0.9
P (A0|T1) = 0.5

Taking the example a step further, suppose that Bob has a son, Charlie (C0 and C1) who has to be dropped
off at school. Charlie being late has an effect on Bob being late. We will adjust the Bayesian Network below
and use the joint probability distribution in the following table.

T

A B

C

P (C0) = 0.9

CT P (B0|CT ) P (B1|CT )
C0T0 0.9 0.1
C0T1 1/6 5/6
C1T0 0.1 0.9
C1T1 0 1

Note that this new conditional distribution does not change any previously calculated probabilities involving
Traffic, Alice, and Bob, but the numbers were chosen specifically to achieve this—this is not always the case.

Based on this graph, the joint probability distribution is:

p(ABTC) = p(T )p(C)p(A|T )p(B|CT ).

It is easy to show that T ⊥⊥ C but as we will see below T ̸⊥⊥ C|B.

Bayesian networks facilitate certain kinds of reasoning. In causal reasoning, we draw conclusions about
unobserved effects base on observed causes. For example, if we know there was heavy traffic, then it is
more likely that Bob was late, p(B1|T1) = 0.85 > p(B1) = 0.41. Evidential reasoning allows us to say
something about the cause by observing the effects. For example,

p(T1|B1) =
p(B1|T1)p(T1)

p(B1)
= 0.7177 > p(T1) = 0.35,

tells us that heavy traffic is more likely when Bob is late, even though we have no direct information about
the traffic.
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We also have p(T1|B1C1) < P (T1|B1), which makes intuitive sense. Bob being late provides evidence for
traffic being heavy. But if we know Charlie is late, then we have an alternative explanation for Bob being
late, lessening the need for traffic being heavy as a reason for Bob’s tardiness. This type of reasoning,
where given an effect, occurrence of one cause lessens the probability of another cause, is called explaining
away. △

8.2.1 Markov Model
A Markov Model or a Markov chain is a Bayesian network whose graph consists of a single path. Such
a model can, for example, represent the total winning of a gambler as a function of time, where each game is
independent. The main assumption is that given the present, the future is independent of the past : how much
money you’ll have after the next game is independent of past games, if your current worth is known. Another,
idealized example is weather forecast: Given that we know today’s weather, past weather is irrelevant for
the purpose of forecasting tomorrow’s weather.

A Markov chain with four nodes is given below

x1 x2 x3 x4

with an associated joint probability distribution that factorizes as

p(x41) = p(x1)p(x2|x1)p(x3|x2)p(x4|x3).

Consider a set of n random variables each of which can take on k different values. The most general
probability distribution over these variables will have kn − 1 parameters (the −1 comes from the fact that
we know the probabilities must sum to one). In practice, this is such a huge number even for k = 2 and
relatively small n, e.g., n = 100, that we can’t even store the distribution, let alone learn it from data. The
Markov model, however, has (k− 1) + (n− 1)k(k− 1) parameters, which is much more manageable. This is
an example of graphical models making modeling more feasible.

A closely related model is the hidden Markov model (HMM):

x1 x2 x3 x4

y1 y2 y3 y4

An HMM is used when the true state of the system cannot be directly observed but we can observe some
function of the state. For example, xi can represent if cancer is in remission or not and yi can represent
observations from medical tests.

Like Markov random fields, Markov and hidden Markov models are named after Russian mathematician
Andrey Markov, but Markov models are Bayesian Networks and not Markov Random Fields.

8.2.2 Why graphical models?
Graphical models, such as Bayesian networks are useful for several reasons.

• They provide a simple but flexible way to encode conditional independencies, enabling us to answer
questions about independence based on graphs.

• GMs help constructing tractable models. As an example, see the number of parameters for a Markov
chain versus an unrestricted model described above.

• Restriction to GMs has computational benefits, allowing us to draw conclusions about hidden quantities
based on observations efficiently using algorithms such as belief propagation.
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8.3 Markov Random Fields
Definition 8.2 (Clique and maximal clique). The following definitions from graph theory will be used in
this section. In an undirected graph, a clique is a subset of nodes such that there is an edge between any
two of them. A maximal clique is a clique such that there are no nodes not in the clique that connected to
all the nodes already in the clique.

Suppose that we are interested in developing a political party affiliation model for a group of 5 people (or
millions of people if we have social network data). Let’s assume their friendships are given by the following
graph

x1 x2

x3x4

x5

in which each node xi represents the party of person i and an edge between xi and xj means that i and j
are friends. How can we develop a probability distribution that can help us in this task?

We would like to encode the following observations in our distribution. We know that if two people are
friends (e.g., 1 and 2), then it is more likely for them to have a common political alignment. Furthermore,
for three people who are all friends (2,3,5), it is perhaps even more likely that they share the same political
views. Let party affiliation be denoted by 0 or 1. We define

ψij(xi, xj) =

{
1, xi = xj
1/2, xi ̸= xj

(8.4)

and

ψijk(xi, xj , xk) =

{
1, xi = xj = xk
1/2, if two of the three are equal

(8.5)

So agreements are assigned a higher value. Now we can define a probability distribution as

p(x1, . . . , x5) ∝ ψ12(x1, x2)ψ14(x1, x4)ψ34(x3, x4)ψ235(x2, x3, x5), (8.6)

which assigns higher probability to configurations in which cliques of friends are in the same parties, as we
wanted. For example, the probability of the left configuration is 16 times as likely to occur as the one on
the right.

1 1

11

1

1 0

10

1

Note that there is no guarantee that the right side of (8.6) sums to 1 when going over all possible configu-
rations so we need a normalization factor, which in this context is called the partition function,

Z =
∑
x5
1

ψ12(x1, x2)ψ14(x1, x4)ψ34(x3, x4)ψ235(x2, x3, x5).

We can then write

p(x1, . . . , x5) =
1

Z
ψ12(x1, x2)ψ14(x1, x4)ψ34(x3, x4)ψ235(x2, x3, x5).
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In our example, it turns out that Z = 8.5, and thus p(1, 1, 1, 1, 1) = 0.11765 while p(1, 0, 1, 0, 1) = 0.0073529.

Finally, we note while we chose the potential function for each pair and triple to be the same regardless of
the identity of the nodes, this is not a necessity; for example, we could have chosen different functions for
ψ12 and ψ34.

We can now consider the general case. A Markov random field (MRF) or an undirected graphical
model consists of an undirected graph G with nodes xm1 = x1, . . . , xm, and a probability distribution p that
factorizes with respect to G, i.e.,

p(xm1 ) =
1

Z

∏
C is a clique in G

ψC(xC), (8.7)

where for each clique C in G, xC is the set of nodes in that clique, ψC is a potential function, which assigns
non-negative values to all configurations of xC , and Z is the partition function, which ensures that the right
side is a proper distribution. Without loss of generality, we may assume the cliques are maximal by absorbing
the potential functions for smaller cliques into the maximal clique. For our political party example above,
for the clique with nodes x2, x3, x5, we can either have 4 potential functions over all the sub-cliques,

ψ′(x2, x3)ψ
′(x3, x5)ψ

′(x2, x5)ψ
′(x2, x3, x5)

or a single potential function
ψ(x2, x3, x5).

Both are valid and equally powerful in terms of representation.

When designing an MRF we incorporate local information into the potential functions, but the final result is
that we learn about the global view of the entire system. Also, in an MRF, the relationships between nodes
are symmetric rather than causal or directed.

8.3.1 Energy-based models
When for all configurations x = xm1 , the probability p(x) is positive, it is helpful to represent the distribution
as

p(x) ∝ e−E(x),

where E(·) is called the energy function. Such a distribution is also called a Boltzmann distribution.
The terminology comes from statistical physics. In that context, lower energy corresponds to higher stability
and thus higher probability for a system. For a graphical model, the energy function can be written as the
sum of terms each of which correspond to a clique in the graph,

E(x) =
∑

C is a clique in G

−ϕC(xC) ⇒ p(x) ∝
∏

eϕC(xC)

A Boltzmann machine is such a graphical model, typically with both nodes that can be observed and
nodes that are hidden (latent).

Example 8.3 (An MRF for denoising Images). The figure below shows an MRF for a noisy black and
white image. Here x1, x2, · · · , x6 represent the true B/W status of the pixels and y1, y2, · · · , y6 the noisy
values (e.g., due to noise of a camera). We denote ‘Black’=-1 and ‘White’ = 1.
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x1

x2

x3

x4

x5

x6

y1

y2

y3

y4

y5

y6

The energy function can be written as

E(x,y) = −
m∑
i

αixi −
∑

(i,j)∈E(G)

βi,jxixj −
m∑
i

ζixiyi,

where E(G) is the set of edges between neighboring pixels and βi,j > 0 and ζi > 0. The αi control how
likely a pixel is to be white without considering other pixels. The interaction between neighboring pixels is
controlled by βij ; since each is positive, it is more likely for adjacent pixels to have the same status. We
assume that it is more likely for the noisy pixel to match the true pixel and so ζi > 0 as well.

In a denoising task, we are given y and our goal is to recover x. A reasonable solution is

argmax
x

p(x,y).

If we can output fractional values (if the denoised image can be grayscale), another possible solution is

E[X|y].

△

8.4 Moralization: Converting BNs to MRFs
In a BN, there is a term for each node xi of the form

p(xi|pa(xi)).

To be able to have the same term in an MRF, we need to have a clique containing xi and its parents. So to
design an MRF that can represent the same distribution as the BN, we first connect all the parents of each
nodes with each other and then remove all directions from the edges.

Example 8.4. As an example, consider:

T

A B

C

⇒

T

A B

C

⇒

T

A B

C

△

We have

p(A,B, T,C) = p(T )p(C)p(A|T )p(B|T,C) ⇒ p(A,B, T,C) = ψ(T )ψ(C)ψ(A, T )ψ(B, T,C),

where, for example, ψ(B, T,C) = p(B|T,C).
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Chapter 9

Independence in Graphical Models

Graphical models encode independence assumptions. In this chapter, we will study algorithms that enable
us to answer questions of the form “Is S1 ⊥⊥ S2 | S3?” where S1, S2, S3 are subsets of the nodes in the graph.

Recall that we construct Bayesian network by assuming certain independence assumptions that allow us to
remove edges from a complete DAG. The topic of this section is study of all independence properties, which
is more general than assumptions used to construct Bayesian networks.

9.1 Independence for sets of random variables
We know that for three random variables x, y, z, x is independent of z given y, denoted x ⊥⊥ z | y, if and
only if

p(x, z | y) = p(x|y)p(z|y).
This extends to sets of random variables and random vectors. For example, {x, y} ⊥⊥ {z, w} | {t, u}, or
simply x, y ⊥⊥ z, w | t, u, if and only if

p(x, y, z, w | t, u) = p(x, y | t, u)p(z, w | t, u)

Using this we can show that if x, y ⊥⊥ z, w | t, u, then x ⊥⊥ z | t, u and x, y ⊥⊥ z | t, u. For example,

p(x, z | t, u) =
∑
y′,w′

p(x, y′, z, w′ | t, u)

=
∑
y′,w′

p(x, y′ | t, u)p(z, w′ | t, u)

=
∑
y′

p(x, y′ | t, u)
∑
w′

p(z, w′ | t, u)

= p(x | t, u)p(z | t, u).

Note however that if x ⊥⊥ z and y ⊥⊥ z it does not follow that x, y ⊥⊥ z. For a counter-example, set
x ∼ Ber(1/2), y ∼ Ber(1/2) and z = x+ y.

Exercise 9.1. Show that for three disjoint sets of random variables A,B,C, if for some functions f and g,

p(A,B | C) ∝ f(A,C)g(B,C),

where the constant of proportionality may depend on C, then A ⊥⊥ B | C. △
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9.2 Independence in Bayesian Networks
In the last chapter we saw that we can obtain a Bayesian Network by starting from a complete graph,
representing the chain rule of probability, and then relying on independence assumptions, remove certain
edges. Conversely, these independence assumptions are implied by the graphical model. But, in addition, to
these, many other independence statements are implied by the network. In this section, we will introduce the
concept of d-separation, using which we can find all independence statements satisfied by every distribution
that factorizes with respect to the Bayesian network. We start by considering several simple networks that
will help us describe d-separation.

9.2.1 Simple Bayesian networks
Independence analysis in BNs relies on determining when information flows along paths in the graph. As a
preliminary step, we study whether information about x affects our belief about z in the graphs of the form
given below

yx z

with various directions on the edges and with y or one of its descendants being known or unknown.

Example 9.2. Given three random variables x, y, and z with relationships shown below, is x ⊥⊥ z?
yx z

The answer: not in general. The only thing we know from the GM is p(x, y, z) = p(y)p(x|y)p(z|y). We thus
have

p(x, z) =
∑
y

p(x, y, z) =
∑
y

p(y)p(x|y)p(z|y)

and this is not necessarily equal to p(x)p(z). Exercise: Find a counter example, i.e., find p such that it
factorizes with respect to the graph but x ̸⊥⊥ z. △

Example 9.3. Is x ⊥⊥ z | y in the graph below?

yx z

The answer: yes. We need to show p(x, z | y) = p(x|y)p(z|y),

p(x, z | y) = p(x, y, z)

p(y)
=
p(y)p(x|y)p(z|y)

p(y)
= p(x|y)p(z|y).

△

Example 9.4. Is x ⊥⊥ z in the graph below?

yx z

The answer: not in general since

p(x, z) =
∑
y

p(x)p(y|x)p(z|y) = p(x)
∑
y

p(y|x)p(z|y)

is not necessarily equal to p(x)p(z). Exercise: Provide a counter example for x ⊥⊥ z. △

Example 9.5. Is x ⊥⊥ z | y in the graph below?
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yx z

The answer: yes. We have

p(x, z | y) = p(x, y, z)

p(y)
=
p(x)p(y|x)p(z|y)

p(y)
=
p(y)p(x|y)p(z|y)

p(y)
= p(x|y)p(z|y).

△

Example 9.6. Is x ⊥⊥ z in the graph below?

yx z

Yes: p(x, z) =
∑

y p(x, y, z) =
∑

y p(x)p(z)p(y | x, z) = p(x)p(z)
∑

y p(y | x, z) = p(x)p(z). △

Example 9.7. Is x ⊥⊥ z | y in the graph below?

yx z

Not in general. Exercise: Verify that for x ∼ Ber( 12 ), z ∼ Ber( 12 ) and y = x + z, p(x, y, z) factorizes with
respect to the graph above and x ̸⊥⊥ z | y. △

In graphs of Examples 9.6 and 9.7, if y has a descendant, that will also affect the independence relationship
between x and z. These cases are considered next.

Example 9.8. Is x ⊥⊥ z in the graph below?

yx z

w

Yes: p(x, z) =
∑

y,w p(x, y, z, w) =
∑

y,w p(x)p(z)p(y | x, z)p(w|y) = p(x)p(z)
∑

y,w p(y | x, z)p(w|y) =
p(x)p(z). △

Example 9.9. Is x ⊥⊥ z | y in the graph below?

yx z

w

Not in general. Exercise: Verify that for x ∼ Ber( 12 ), z ∼ Ber( 12 ), y = x+z, and w = y, p(x, y, z, w) factorizes
with respect to the graph above and x ̸⊥⊥ z | y. △

9.2.2 d-separation
Based on our analysis in the previous section, we can summarize whether information flows from x to z in
a graph of the form x − y − z in Table 9.1. The table is organized by the direction of edges at y, with H
(Head) representing an incoming edge and T (Tail) representing an outgoing edge. We can see that for the
HT, TH, and TT configurations, y blocks the path from x to z if it is known (given) and for HH, it blocks
the path if it is not known and neither are any of its descendants.
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Table 9.1: Flow of information between x and z. Nodes with style y are knwon.

Passing through Blocked

HT/TH
yx z

yx z

yx z

yx z

TT yx z yx z

HH

yx z

yx z

w u

yx z

yx z

w u

We can generalize this observation to decide, for three disjoint sets A, B, and C, of nodes, whether A ⊥⊥ B | C.

Definition 9.10. For a set C of known/observed nodes, a path is said to be blocked if it has a node v such
that the nodes incident to v are:

• HT,TH, or TT and v ∈ C;

• HH, and neither v nor its descendants are in C.

Definition 9.11. For disjoint sets A, B, and C, we say that A and B are d-separated given C if every
path between a node in A and a node in B is blocked if we assume the nodes in C are known.

Theorem 9.12. For three disjoint sets of nodes, A, B, and C, in a graph G, such that A and B are
d-separated given C, then A ⊥⊥ B | C according to any probability p that factorize with respect to G.

Remark ** The converse of the theorem also holds in the sense that any distribution p that satisfies all
independencies implied by d-separation factorizes with respect to the graph.

Remark ** Could a distribution p that factorizes with respect to G satisfy independencies that are not
implied by d-separation? Indeed, yes. The distribution p =

∏n
i=1 p(xi) factorizes with respect to any graph

G and for any non-trivial G, p satisfies independencies that are not implied by d-separation in G. However,
for any independency A ⊥⊥ B | C not implied by d-separation, there is a probability distribution factorizing
with respect to G for which A ̸⊥⊥ B | C.

Example 9.13. In the traffic graphic from last chapter, shown below, we want to find all independences of
the form x ⊥⊥ y and x ⊥⊥ y | z for vertices x, y, z. For those that do not follow form d-separation, we write
x ̸⊥⊥ y and x ̸⊥⊥ y | z. We have

• No conditioning: T ⊥⊥ C, T ̸⊥⊥ A, T ̸⊥⊥ B, C ⊥⊥ A, C ̸⊥⊥ B, A ̸⊥⊥ B.

• Given T : A ⊥⊥ B | T , A ⊥⊥ C | T , B ̸⊥⊥ C | T .

• Given C: A ̸⊥⊥ B | C, A ̸⊥⊥ T | C, B ̸⊥⊥ T | C.

• Given A: T ̸⊥⊥ B | A, T ⊥⊥ C | A, B ̸⊥⊥ C | A.

• Given B: T ̸⊥⊥ A | B, T ̸⊥⊥ C | B, A ̸⊥⊥ C | B.

Farzad Farnoud 101 University of Virginia



EPL Chapter 9. Independence in Graphical Models

T

A B

C

In addition, we have A ⊥⊥ {B,C} | T but {T,A} ̸⊥⊥ C | B. △

Example 9.14 (The Naive Bayes model). The graph for the naive Bayes classification model is

y

x1 x2 · · ·

· · ·

xm

where y denotes the class and x1, . . . , xm denote the dimensions of the input vector. Given y the dimensions
are independent, i.e., xi ⊥⊥ xj | y for i ̸= j. But if the class y is not known, generally speaking, xi ̸⊥⊥ xj . △

Example 9.15. For four nodes w, x, y, and z, shown below, assume y is given. We can determine that
none of the independencies w ⊥⊥ z | y, x ⊥⊥ z | y, x ⊥⊥ w | y follow from d-separation. In fact, we can find
a counter example, i.e., a distribution that factorizes with respect to the graph below and does not satisfy
these independencies. Specifically, let w ∼ Ber(1/2), z ∼ Ber(1/2), y = w + z and x = y + z. Note however
that y ⊥⊥ n | y for n ∈ {x,w, z} by the definition of independence.

y

w z

x

△

9.2.3 Markov Blanket in Bayesian Networks
In a graphical model, the Markov blanket of a node y is the set of nodes S such that y ⊥⊥ U | S for any
set U . In other words, the set S isolates y from the rest of the graph. In a Bayesian network, the Markov
blanket of y consists of its parents, its children, and the immediate parents of its children. The proof of this
statement is left as an exercise. An example is shown in Figure 9.1.

9.3 Independence in MRFs
The set of independencies implied by an MRF are more straightforward as separation is the naive graph-
theoretic separation. As an example, consider the friendship graph of the previous chapter and assume we
know the political affiliation of x2,x3.

x1 x2

x3x4

x5
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y

b acd

e

f

x

g

z w

Figure 9.1: The Markov blanket of node y are the set of nodes colored red.

Figure 9.2: MRF Theorem

Then intuitively, we can expect that knowing x5 does not provide any relevant information about x1,x4 and
so we must have x1, x4 ⊥⊥ x5 | x2, x3.
In an MRF G, suppose xA, xB , and xC are disjoint subsets of vertices such that xA∪xB ∪xC = G, as shown
in Figure 9.2. If every path from xA to xB travels through xC , then xA ⊥⊥ xB | xC . To see that this is the
case, note that

p(xA, xB | xC) = P (xA | xC)P (xB | xC)

=
p(xA, xB , xC)

p(xC)
∝ p(xA, xB , xC)

∝
∏

Q is a clique in G

ψQ(xQ) =
∏

Q∈xA∪xC

ψ(xQ)
∏

Q∈xB∪xC

ψ(xQ).

The last equality follows from the fact that there is no clique in G that has a node in both xA, and xB since
xC separates xA and xB . The result follows from Exercise 9.1.

Examples are given in Figure 9.3.

The Markov Blanket of a node in an MRF is the set of neighbors as shown in Figure 9.4.
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Figure 9.3: Two examples of MRFs

Figure 9.4: As example of a Markov Blanket
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Chapter 10

Parameter Estimation in Graphical
Models

A graphical model has two components: the graph structure (the nodes and their connections), and the
conditional probability distributions/potential functions, which are usually expressed in parametric form. In
this chapter:

• We will consider the problem of estimating the parameters in graphical models. The problem is simpler
in the case of Bayesian networks and for simplicity, that is were our attention will be focused.

• We will not consider the more challenging problem of learning the structure of a network. The best
case scenario is that you have good reason to design a graph in a certain way, e.g., based on causality.

Consider a BN with a known graph with m nodes x1, . . . , xm in which the parameters of the conditional
distribution are unknown. There are m conditional probability distributions (CPDs)1, one for each node,
and each of these has an unknown parameter vector. We denote the concatenated vector of all parameters
as θ = (θ1, . . . ,θm). We collect a dataset D = {x1, . . . ,xn} of n iid samples, where xi = (xi1, . . . , xim). Our
goal is to estimate θ and possibly also to predict the next outcome xn+1 = (xn+1,1, . . . ,xn+1,m).

10.1 MLE for Parameters of Bayesian Networks
We will start with maximum likelihood estimation via an example.

Example 10.1. Consider the network from previous chapters with the vector of parameters θ = (θT , θC ,θA,θB).

T

p(T = 0; θT ) = θT

A
p(A = 0|T = 0;θA) = θA0

p(A = 0|T = 1;θA) = θA1
B

p(B = 0|C = 0, T = 0;θB) = θB00

p(B = 0|C = 0, T = 1;θB) = θB01

p(B = 0|C = 1, T = 0;θB) = θB10

p(B = 0|C = 1, T = 1;θB) = θB11

C

p(C = 0; θC) = θC

To collect data, on n days, we record whether there is heavy traffic and whether Alice, Bob, and/or Charlie
1Some of the nodes do not have any parents so their distribution is not conditioned on any other nodes. We view these as

conditioned on the empty set and thus refer to all probability distributions in a Bayesian Network as conditional probability
distributions.
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are late, resulting in x1, . . . ,xn, where xi = (Ti, Ai, Bi, Ci). Then we maximize the likelihood

argmax
θ

p(D;θ) = arg max
θT ,θA,θB ,θC

p(x1, . . . ,xn; (θT ,θA,θB , θC)) (10.1)

△

Note that in the above example, the maximization evidently involve 6 dimensions. In real-world problems
the networks have many more parameters. This would create computational difficulties since it would
require maximizing a function of many variables. Fortunately, in the case of Bayesian networks, the problem
decomposes to estimating the parameters for each nodes separately, as we will see.

Decomposability of likelihood. For a network with m nodes, parameters θ = (θ1, . . . ,θm) and data
D = (x1, . . . ,xn), the likelihood function is

p(D;θ) =
n∏

i=1

p(xi;θ),

where for the ith data sample, we have

p(xi;θ) =

m∏
j=1

p(xij |pa(xij);θj)

and thus the log-likelihood of the whole dataset is

ℓ(θ) =

n∑
i=1

ln p(xi;θ) =

n∑
i=1

m∑
j=1

ln p(xij |pa(xij);θj) =
m∑
j=1

n∑
i=1

ln p(xij |pa(xij);θj).

Thus for a given j, θj only appears in the term
∑n

i=1 ln p(xij |pa(xij);θj) and no other θk appears in this
term. So each θj , and thus each conditional probability distribution, can be learned independently of the
others, which significantly reduces the complexity.

Exercise 10.2. For the TABC network above, what would our data look like? What is the ML estimate
for each parameter based on this data? △

10.2 Bayesian Parameter Estimation for Bayesian Networks
An alternative approach is using Bayesian inference. Since in the Bayesian view, parameters are considered
random, we can augment the Bayesian network by adding the parameters as nodes.

Side note 1: the plate notation. Before proceeding, we introduce the plate notation which is helpful
for simplifying repeated elements in graphical models, especially a set of iid nodes. Specifically, instead of
repeating a node k times, we enclose one instance and indicate how many times that segment of the graph
is repeated. Both of the following graphs represent the factorization p(y1, . . . , yk, θ) =

∏k
i=1 p(yi|θ).

θ

y1 y2 · · ·

· · ·

yk

≡

yi

k

θ
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Side note 2: Conditioning for sets of nodes. Consider a BN with nodes y1, . . . , ym. Assume that the
set of nodes can be partitioned into two sets S1 = {y1, . . . , yr} and S2 = {yr+1, . . . , ym} such that there are
no edges from S2 to S1. Then the following hold

p(S1) = p(y1, . . . , yr) =

r∏
i=1

p(yi|pa(yi)), (10.2)

p(S2|S1) = p(yr+1, . . . , ym|y1, . . . , yr) =
m∏

i=r+1

p(yi|pa(yi)). (10.3)

However, in general,

p(S2) = p(yr+1, . . . , ym) ̸=
m∏

i=r+1

p(yi|pa(yi)), (10.4)

p(S1|S2) = p(y1, . . . , yr|yr+1, . . . , ym) ̸=
r∏

i=1

p(yi|pa(yi)) (10.5)

Bayesian networks with explicit representation of the parameters and data. Let us consider a
simpler version of the network given in Example 10.1, with unknown parameter vector θ = (θT ,θA,θB):

T

p(T = 0; θT ) = θT

A
p(A = 0|T = 0;θA) = θA0

p(A = 0|T = 1;θA) = θA1
B

p(B = 0|T = 0;θB) = θB0

p(B = 0|T = 1;θB) = θB1

At this point, we are still viewing the parameters as unknown constants. Now to formulate the Bayesian
estimation of these parameters, we need to view them as random and add nodes for them to the graph,
estimating the parameters as the network:

T

p(T = 0, θT ) = θT

A
p(A = 0|T = 0,θA) = θA0

p(A = 0|T = 1,θA) = θA1
B

p(B = 0|T = 0,θB) = θB0

p(B = 0|T = 1,θB) = θB1

θT p(θT )

θB p(θB)

θA p(θA)

Incorporating the n samples D = {(T1, A1, B1), . . . , (Tn, An, Bn)}, we represent the problem of estimating
the parameters as the network, where the CPDs are omitted for clarity:
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Ti

Ai

n

Bi

θT

θB

θA

Posterior distributions of the parameters. We are interested in finding p(θ|D) = p(θT ,θA,θB |D).
Note that

p(θ|D) = p(θT |D)p(θA,θB |D) (10.6)
= p(θT |D)p(θA|D)p(θB |D) (10.7)
= p(θT |Tn

1 )p(θA|Tn
1 , A

n
1 )p(θB |Tn

1 , B
n
1 ), (10.8)

where the first equality follows from the fact that given T i
1 ⊂ D, θT is independent of all other nodes,

including θA,θB . In other words, T i
1 is the Markov blanket of θT . The second equality also holds because D

contains the Markov blanket for θA and θB . Similarly, the last equality follows from a Markov blanket-type
argument.

In other words, to estimate each parameter, we need to only consider the part of the data that is in the
parameter’s Markov blanket. This also makes intuitive sense: For example, to estimate the probability of
Alice being late given the state of traffic, only the part of data that deals with Alice’s arrival time and traffic
is relevant. The fact that the posterior for each parameter can be determined separately significantly reduces
the computational complexity.

Example 10.3. Let us find p(θA|D), assuming that the prior satisfies p(θA) = p(θA0)p(θA1),

p(θA|D) = p(θA|Tn
1 , A

n
1 ) ∝ p(θA)p(Tn

1 , A
n
1 |θA)

(∗)∝ p(θA)

n∏
i=1

p(Ai|Ti,θA)

=

(
p(θA0)

∏
i:Ti=0

p(Ai|Ti = 0, θA0)

)(
p(θA1)

∏
i:Ti=1

p(Ai|Ti = 1, θA1)

)
.

(Why does the relation shown as
(∗)∝ hold?) Since the terms depending on θA0 and θA1 separate, they are

conditionally independent and we can estimate them separately: Hence, the estimators of θ0A and θ1A are

p(θA0|D) ∝ p(θA0)
∏

i:Ti=0

p(Ai|Ti = 0, θA0),

p(θA1|D) ∝ p(θA1)
∏

i:Ti=1

p(Ai|Ti = 1, θA1).

Suppose p(θ0A) ∼ Beta(1, 1) and out of 100 days with no traffic, in 40 days Alice was on time. Hence,

θA0|D ∼ Beta(41, 61).

△
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Predicting future outcomes. We can also add future outcomes to predict their value to the network:

Ti

Ai

n

Bi

θT

θB

θA

Tn+1

An+1 Bn+1

Let xn+1 = (Tn+1, An+1, Bn+1). We have

p(xn+1,θ|D) = p(θ|D)p(xn+1|D,θ) = p(θ|D)p(xn+1|θ). (10.9)

We have already seen how to find p(θ|D). We can decompose p(xn+1|θ) as given by the Bayesian network:

p(xn+1|θ) = p(Tn+1|θT )p(An+1|θA, Tn+1)p(Bn+1|θB , Tn+1). (10.10)

Note that the terms on the right are known probability distributions.

Finally, if we are interested in a specific future outcome, e.g., p(An+1|D), we can find it through an appro-
priate integration/summation of p(xn+1,θ|D).

Example 10.4. The posterior probability of the next sample (An+1, Bn+1) is

p(An+1, Bn+1|D) =
ˆ
θ

∑
Tn+1

p(An+1, Bn+1, Tn+1,θ|D)dθ,

where we can find the integrand/summand as described in (10.9). In general, such integrals may be difficult
to find analytically. In practice, we rely on computational methods such as Markov Chain Monte Carlo
(MCMC).

Alternatively, to predict future values, we can use a Bayesian point estimate for θ, and then assume that
they are known as shown below.

T

p(T = 0) = θ̂T

A B

p(B = 0|T = 0) = θ̂B0

p(B = 0|T = 1) = θ̂B1

p(A = 0|T = 0) = θ̂A0

p(A = 0|T = 1) = θ̂A1

△

We can use graphical models to represent some of the estimation/learning problems we have already discussed
in previous chapters.

Example 10.5. Let y have a distribution p with an unknown parameter θ. Below, on the left a graphical
model for y is shown without explicit representation of θ and on the right, θ is added as a node:

Farzad Farnoud 109 University of Virginia



EPL Chapter 10. Parameter Estimation in Graphical Models

y

p(y; θ)

=⇒
y p(y|θ)

θ p(θ)

We have n independent samples, D = {y1, y2, . . . , yn}, from the distribution and our goal is to predict the
next outcome yn+1. We can augment the graph to represent the problem as follows:

θ

yi

n

yn+1

with a joind distribution that can be written as p(θ, yn1 , yn+1) = p(θ)p(yn1 |θ)p(yn+1|θ).
We can perform similar analysis as we have done in the Bayesian Estimation chapter, using d-separation to
verify independence relations. We have

p(yn+1|yn1 ) =
ˆ
p(yn+1, θ|yn1 )dθ =

ˆ
p(θ|yn1 )p(yn+1|θ, yn1 )dθ =

ˆ
p(θ|yn1 )p(yn+1|θ)dθ

where in the last step we have used yn+1 ⊥⊥ yn1 | θ, which follows from d-separation. Furthermore,

E[yn+1|yn1 ] = E[E[yn+1|θ, yn1 ]|yn1 ] = E[E[yn+1|θ]|yn1 ]. (10.11)

Roughly speaking, to learn about yn+1 given yn1 , we must first learn about θ since this is the node that
connects yn1 and yn+1.

For example, assume p(θ) ∝ 1, yi|θ ∼ Ber(θ), and that out of the n samples yi, there s 1s and f 0s. Then

p(yn+1 = 1|yn1 ) = E[yn+1|yn1 ] = E[E[yn+1|θ]|yn1 ] = E[θ|yn1 ] =
s+ 1

s+ f + 2
.

△

In more general cases, some of the “future outcomes” may also be known. But the same principles discussed
above, still apply.

Example 10.6 (Bayesian Linear Regression). Consider the regression problem

p(yi|xi,θ, σ
2) ∼ N (θTxi, σ

2),

with data D = {(x1, y1), . . . , (xn, yn)}. We are interested in determining p(yn+1|xn+1,D). The problem can
be represented as the graph
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θ, σ2

yi

n

xi

yn+1

xn+1

We note that

p(yn+1,θ, σ
2|xn+1,D) = p(θ, σ2|xn+1,D)p(yn+1|θ, σ2,xn+1,D) (10.12)

= p(θ, σ2|D)p(yn+1|xn+1,θ, σ
2), (10.13)

where we have used the following facts: θ, σ2 ⊥⊥ xn+1|D and yn+1 ⊥⊥ D|xn+1,θ, σ
2. We know how to

find p(θ, σ2|D) and p(yn+1|xn+1,θ, σ
2) is given by assumption. While we can find p(yn+1|xn+1) through

integration analytically, as discussed in the linear regression chapter, we normally produce samples for θ, σ2

and then proceed to produce samples for p(yn+1|xn+1,θ, σ
2).

△

10.3 Parameter Estimation in MRFs
Recall that for an MRF G, the probability distribution is given as

p(x;θ) =
∏

c is a clique in G

ψθ(xc)/Z(θ),

where Z(θ) =
∑

x

∏
c ψθ(xc) is the partition function. Let us consider the frequentist estimation of θ,

e.g., maximum likelihood. Unfortunately, the log-likelihood function does not decompose into terms each
depending on one component of θ. This is due to the presence of the partition function, which generally
depends on all the components of θ, leading to a high-dimensional problem. Furthermore, computing
the partition function is a computationally difficult task since it involves computing a sum with possibly
exponentially many terms. We will discuss computational approaches to this problem later in the course.

Helpful references: [2, 3, 1]
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Chapter 11

Inference in Graphical Models

11.1 Introduction
Inference refers to drawing conclusions about unknown quantities based on observations and a model. In the
context of graphical models assume, our goal is to learn about a set of query nodes given observed nodes.

For example, consider the following graph with nodes for background information about a patient (e.g., diet,
exercise, genetics, etc.), diseases (diabetes, hypertension, etc.), and symptoms/test results (blood pressure,
etc). Our goal is assign probabilities to disease based on our observations. Alternatively, we may be interested
in identifying the disease that is most likely.

Background

Diseases

Symptoms

? ? ?

In such a graph, we deal with three types of nodes, evidence (observed) nodes, xE , query nodes, xQ, and
other nodes, xO.

Without having made any observations, we can find the probability of the query nodes through marginal-
ization:

p(xQ) =
∑

xO,xE

p(xQ, xO, xE),

and with observations, through conditioning :

p(xQ|xE) ∝
∑
xO

p(xQ, xO, xE).

Since we can view the latter case as doing summation over xE that only consists of a single set of values,
from this point on, we will only consider marginalization. Note that we need to compute

∑
xO
p(xQ, xO, xE)

for all values of xQ to be able to find p(xQ|xE).
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11.2 The Elimination Algorithm
Suppose that in a Markov chain x1 → x2 → x3 → x4 → x5, we need to find p(x4),

p(x4) =
∑

x1,x2,x3,x5

p(x1)p(x2|x1)p(x3|x2)p(x4|x3)p(x5|x4).

Assume each node can take k different values. In the naive approach, we need to compute and add O(k4)
terms, and we need to do so for each possible value of x4. So finding the distribution of x4 has complexity
O(k5).

Alternatively, we could eliminate each variable, which can be done in different orders. The equalities below
represent computation performed by an algorithm:

p(x4) =
∑
x1

∑
x2

∑
x3

∑
x5

p(x1)p(x2|x1)p(x3|x2)p(x4|x3)p(x5|x4)

=
∑
x1

∑
x2

∑
x3

p(x1)p(x2|x1)p(x3|x2)p(x4|x3)
∑
x5

p(x5|x4)

=
∑
x1

∑
x2

∑
x3

p(x1)p(x2|x1)p(x3|x2)p(x4|x3)

=
∑
x1

∑
x2

p(x1)p(x2|x1)
∑
x3

p(x3|x2)p(x4|x3)

=
∑
x1

∑
x2

p(x1)p(x2|x1)M1(x2, x4)

=
∑
x1

p(x1)
∑
x2

p(x2|x1)M1(x2, x4)

=
∑
x1

p(x1)M2(x1, x4)

= p(x4)

The function M1(x2, x4) is defined as the result of the sum
∑

x3
p(x3|x2)p(x4|x3), and a similar statement

holds for M2. We can think of M1(x2, x4) as a table stored in computer memory after it is computed.
Computing M1(x2, x4) needs to be done for k different values of x2 and each of these requires computing
and adding k terms, one for each possible value of x3. The computational complexity for a specific value of
x4 is O(k2), i.e., we need of the order of k2 computations. The total computational complexity of finding the
distribution p(x4) is O(k3) since we need to repeat all operations for the k different values that x4 can take.
More generally, for a Markov chain with n nodes, the complexity is O(nk3) for computing the distribution
p(xn). But with the naive approach it is O(kn).

Note that in Bayesian networks, we can ignore downstream nodes since their probability marginalizes to 1
(but not in MRFs).
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We could also choose the following ordering, which would lead to a different complexity:

p(x4) =
∑
x1

∑
x3

∑
x2

p(x1)p(x2|x1)p(x3|x2)p(x4|x3)

=
∑
x1

∑
x3

p(x1)p(x4|x3)
∑
x2

p(x2|x1)p(x3|x2)

=
∑
x1

∑
x3

p(x1)p(x4|x3)T1(x1, x3)

=
∑
x1

p(x1)
∑
x3

p(x4|x3)T1(x1, x3)

=
∑
x1

p(x1)T2(x1, x4)

= p(x4).

Here, computing T1(x1, x3) has complexity O(k3), which is also the complexity for one value of x4. For the
distribution, the complexity is O(k4) for this ordering.

The problem of finding the best ordering for elimination is NP-hard (i.e., computationally difficult) for
general graphs.

Now let us find p(x0|x4) in the following network:

x0 x1

x2

x3

x4

x5

We have

p(x0|x4) ∝
∑

x1,x2,x3

p(x0)p(x1|x0)p(x2|x1)p(x3|x1)p(x4|x2, x3)

=
∑
x1,x3

p(x0)p(x1|x0)p(x3|x1)
∑
x2

p(x2|x1)p(x4|x2, x3)

=
∑
x1,x3

p(x0)p(x1|x0)p(x3|x1)K1(x1, x3, x4)

=
∑
x1

p(x0)p(x1|x0)
∑
x3

p(x3|x1)K1(x1, x3, x4)

=
∑
x1

p(x0)p(x1|x0)K2(x1, x4)

= p(x0)
∑
x1

p(x1|x0)K2(x1, x4)

= p(x0)K3(x0, x4).

The complexity is dominated by K1(x1, x3, x4), which is O(k3), assuming each node can take on k values,
leading to a total complexity of O(k4) for the conditional distribution of x0.

11.3 The Sum-Product Algorithm
The sum-product algorithm, also known as belief propagation and sum-product message passing, provides a
simple way of doing exact inference on trees. It is also commonly used on graphs that are not trees since it
often provides good approximations.
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We need to clarify what we mean by trees. For Markov random fields, the algorithm works on trees, in the
graph-theoretic sense. But for Bayesian networks, it works for graphs whose equivalent MRF (the moralized
graph) is a tree. In particular, no node can have more than one parent. Given the straightforward equivalence
between these two categories, we only consider Markov random field trees.

Consider the the following MRF, where we are interested in p(x4), with

p(x41) ∝ ψ(x1, x3)ψ(x2, x3)ψ(x2)ψ(x3, x4)ψ(x4)ψ(x4, x5)

x3

x1

x2

x4 x5

Let’s look at this graph as a rooted tree,

x4

x3

x1 x2

x5

and perform elimination starting from the leaves to the roots:

p(x4) ∝
∑

x1,x2,x3,x5

ψ(x1, x3)ψ(x2, x3)ψ(x2)ψ(x3, x4)ψ(x4)ψ(x4, x5)

=
∑
x3

ψ(x3, x4)ψ(x4)

(∑
x1

ψ(x1, x3)

)(∑
x2

ψ(x2, x3)ψ(x2)

)(∑
x5

ψ(x4, x5)

)
=
∑
x3

ψ(x3, x4)ψ(x4) m13(x3) m23(x3) m54(x4)

= ψ(x4)m54(x4)
∑
x3

ψ(x3, x4) m13(x3) m23(x3)

= ψ(x4)m54(x4)m34(x4)

(11.1)

We can view this computation as being done on each node and then messages being passed to neighbors:

x4

x3

x1 x2

x5

m
13
(x

3
)

−−
−−
−→

m
34
(x

4
)

−−
−−
−→

m
23 (x

3 )

←−−−−−

m
54 (x

4 )

←−−−−−
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where

m13(x3) =
∑
x1

ψ(x1, x3),

m23(x4) =
∑
x2

ψ(x2, x3)ψ(x2),

m54(x4) =
∑
x5

ψ(x4, x5),

m34(x4) =
∑
x3

ψ(x3, x4) m13(x3) m23(x3).

and then at the root, we can find p(x4) as

p(x4) ∝ ψ(x4)m54(x4)m34(x4).

Recall that this also works for conditioning. Specifically, if we are interested in the conditional probability
p(x4|x3 = a), we would compute

m34(x4) = ψ(x3 = a, x4) m13(a) m23(a),

p(x4) ∝ ψ(x4)m54(x4)m34(x4).

We can state the sum-product algorithm for a rooted tree as follows. At each node xj with parent xk,

• Product step: After receiving messages mij(xj) from all children xi of xj , compute the product of all
messages and any potential functions containing xj ,

ψ(xj)ψ(xj , xk)
∏
i

mij(xj).

Note that not all potentials are always present. Do this for each possible pair of values for (xj , xk).

• Sum step: Sum over all possible values of xj to produce the message

mjk(xk) =
∑
xj

ψ(xj)ψ(xj , xk)
∏
i

mij(xj), (11.2)

and send to xk. Do this for each possible value for xk.

A critical point in the correctness of the sum-product algorithm is that the messages received by each node
are functions of the value of that node. This is easy to see by induction. After the product step, we get a
function of both the current node xj and its parent xk. The sum eliminates the current node and so the
parent node xk receives a message that is only a function of xk.

Complexity of computing each message: Suppose each node can take onK different values, namely {1, 2, . . . ,K}.
So the sum in (11.2) contains K terms. Furthermore, mjk(xk) needs to be computed for xk = 1, 2, . . . ,K.
We can imagine a vector

mjk =


mjk(1)
mjk(2)

...
mjk(K)


being sent to the node xk. So the complexity at each node is O(K2) and for n nodes the complexity is
O(nK2).

Computing marginals at all nodes. We can easily extend this algorithm to computing all marginals
rather than a single node. We note that the messages sent by the nodes do not depend on the location of the
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root. Each node sends a message when it receives messages from all but one of its neighbors. We can extend
this by not sending a message only once, but sending a message to each neighbor based on the messages
received by the other neighbors:

x3

x1

x2

x4 x5

m
13 (x

3 )

−−−−−→
←−−−−−
m
31 (x

1 )
m34(x4)−−−−−→
←−−−−−
m43(x3)

m
32
(x

2
)

←−
−−
−−

−−
−−
−→

m
23
(x

3
)

m54(x4)←−−−−−
−−−−−→
m45(x5)

Here the order of messages is color-coded: 1, 2, 3. We can now find the marginal at each node. For example,

p(x2) ∝ m32(x2)ψ(x2),

p(x3) ∝ m13(x3)m23(x3)m43(x3).

Example 11.1. An example for the sum-product algorithm is given at the end of the document. △

11.4 The Max-Product Algorithm
The max-product algorithm is used to identify the configuration that has the maximum probability. Examples
include part-of-speech tagging, voice recognition, decoding (communication), and image denoising. The last
example is shown below:

x11 x12 x13 x14 x15

x21 x22 x23 x24 x25

x31 x32 x33 x34 x35

x11 y12 y13 y14 y15

y21 y22 y23 y24 y25

y31 y32 y33 y34 y35

where xij are true image pixels and yij are observed pixels, e.g., from a camera. Our goal is to find

argmax
x

p(x,y).

Note that the local maximum-probability configuration does not necessarily agree with the global maximum-
probability configuration. As an example, consider

p(x1, x2) x1 = 0 x1 = 1
x2 = 0 .3 .4
x2 = 1 .3 0
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We have

arg max
x1,x2

p(x1, x2) = (1, 0)

argmax
x1

p(x1) = argmax
x1

(p(x1, x2 = 0) + p(x1, x2 = 1)) = 0.

To see the max-product algorithm, suppose we want to find

argmax
x5
1

p(x51)

for the tree given in the previous section. To solve this problem, let us start with solving

max
x5
1

p(x51)

We proceed similar to (11.1). For clarity, we make the partition function Z explicit, but we don’t actually
need to find it. We replace each summation in the previous derivation with max and write:

max p(x51) = max
x1,x2,x3,x4,x5

Zψ(x1, x3)ψ(x2, x3)ψ(x2)ψ(x3, x4)ψ(x4)ψ(x4, x5)

= Zmax
x4

max
x3

ψ(x3, x4)ψ(x4)

(
max
x1

ψ(x1, x3)

)(
max
x2

ψ(x2, x3)ψ(x2)

)(
max
x5

ψ(x4, x5)

)
= Zmax

x4

max
x3

ψ(x3, x4)ψ(x4) m13(x3) m23(x3) m54(x4)

= Zmax
x4

ψ(x4)m54(x4)max
x3

ψ(x3, x4) m13(x3) m23(x3)

= Zmax
x4

ψ(x4)m54(x4)m34(x4)

This is the same as the sum-product algorithm, except that we take the max of product terms. We can again
view this as message-passing, but using max instead of sum, with the following messages:

m13(x3) = max
x1

ψ(x1, x3),

m23(x4) = max
x2

ψ(x2, x3)ψ(x2),

m54(x4) = max
x5

ψ(x4, x5),

m34(x4) = max
x3

ψ(x3, x4) m13(x3) m23(x3).

If we have Z, we can find the maximum probability. But we are interested in the values x∗ of x that achieve
this maximum probability (also we don’t have Z). To find x∗, we simply need to keep track of which values
of xi maximize the message. Specifically, for a message mij(xj), we should know for each value of xj what
value of xi was used to obtain the maximum value of the message. Then, when we find what value of x4
maximizes the probability at the last step, we backtrack and find all the other xis.

11.5 Sum-product Example
In the example below, we are interested in the probability of each node given that B = 0, i.e., Bob’s on time.
Specifically, we are after p(T |B = 0), p(A|B = 0), p(B|B = 0).
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Chapter 12

Inference in Hidden Markov Models

A hidden Markov model (HMM) is a graphical model of the form shown below. The top chain is a Markov
chain representing the state of some system. Typically the state cannot be observed directly. However, we
can observe some (probabilistic) function of the state. For example, the Markov chain can represent the
health status of a patient and the observations are symptoms such as temperature, blood pressure, etc. As
another example, the Markov chain can represent the part of speech of words in a text, and the observation
is the actual word.

x1 · · · xt−1 xt xt+1 · · · xTStates (hidden):

y1 · · · yt−1 yt yt+1 · · · yTObservations:

· · · · · ·

The probability distribution for this model factorizes as

p(xT1 , y
T
1 ; θ) = p(x1)

T∏
t=2

p(xt|xt−1)

T∏
t=1

p(yt|xt).

Assuming the Markov chain and the observations are both on discrete spaces, we can complete the model
by specifying θ = (π,A,B), where:

• The probability distribution π for x1,
πi = p(x1 = i).

• The transition matrix A of the Markov chain,

Aij = p(xt+1 = j|xt = i).

• The emission matrix B describing the probabilities of the observations given the state,

Bij = p(yt = j|xt = i).

Below are three common inference problems associated with HMMs and the methods for solving them. We
will not derive the solutions but they can be found in [2].

• Evaluation: p(xt|yT1 ; θ)→ forward-backward algorithm (sum-product).

• Decoding: argmaxxT
1
p(xT1 |yT1 ; θ)→ Viterbi algorithm (max-product).
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• Learning: argmaxθ p(y
T
1 ; θ)→ Baum-Welch algorithm (EM).

Below are HMM notes from a previous class. Unless I get a chance to go over these in class, they are not
part of the course material and are here for self-study. But note that the methods are sum-product, max-
product, and EM algorithms, which are part of the course and so reviewing the material below can be helpful
in understanding those.
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Helpful references: [2, 1]
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Factor Graphs and Sum/Max-product
Algorithms **
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Chapter 14

Markov Chains

14.1 Introduction
A Markov chain (MC) is a stochastic process whose future is independent from its past and can be
represented as the following Bayesian network:

x0 x1 · · · xt−1 xt xt+1 · · ·

The value of xt is called the state of the Markov chain at time t. The set of all possible states is the state
space. For example,

• We may represent daily weather with the state space: {sunny, cloudy, rainy}

• The state of the disease in a patient may be represented by a MC with two states: {remission, relapse}.

• The number of animals of a certain species can be represented with states {0, 1, 2, . . . }.
Uncountable state spaces are also possible (e.g., temperature) and we will rely on them for sampling later.
But for simplicity, we focus on finite-state MCs. Also, note that a MC is usually an approximation of the
world since we like to have a small number of states.

To complete the characterization of a MC, we also need to know the CPDs,

p(x0 = i), p(xt+1 = j|xt = i).

We refer to p(x0) as the initial distribution and to the CPD p(xt+1 = j|xt = i) as transition proba-
bilities. We are interested in time-homogeneous MCs only, in which p(xt+1 = j|xt = i) is independent
of t, i.e., the same for all time instances. In such MCs, we can represent the transition probabilities as a
transition matrix A with

Pij = p(xt+1 = j|xt = i),

which is particularly useful if the state space is a finite set.

Example 14.1. In a Markov chain representing the health of a patient, if we let 1 represent ‘remission’ and
2 represent ‘relapse,’ we may have

P =

(
0.8 0.2
0.5 0.5

)
.

△

Given that the important features of a time-homogeneous MC are its state space and transition probabilities,
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it is useful to represent the chain as graph, called the state-transition graph, whose nodes are the states
and edges represent transitions and their probabilities. For example, for a disease, we may have

Remission Relapse0.8

0.2

0.5

0.5

Here are some other examples of common MCs:

• Random walk on a grid (1D, 2D, ...). For example, in the 1-dimensional case, we can move left or
right at random. This extends to n dimensions. In this context, “a drunk man will find his way home,
but a drunk bird may get lost forever.”

• Page-rank. This is closely related to the previous chain, except that this time the states are webpages,
and we click on a link in the current page to transition to another one. This was the main idea behind
Google search’s ranking of web pages, using stationary probabilities (more on these below).

• DNA mutations. There are four states {A,C,G, T} and due to mutations, a position in the genome
may change from one state to another. Several variations are used in phylogenetics.

As stated before, MCs are usually approximations of real phenomena because we cannot include all relevant
information in the state. As an example, consider a MC for weather. Suppose our chain represents a short
period where seasonal effects are negligible and so we can assume the chain to be time-homogeneous. Each
state of the MC could be the total amount of precipitation. This is already useful since a rainy day is more
likely after a rainy day than after a sunny day. But if we add information about temperature, cloud cover,
air pressure, etc., the model becomes more accurate and useful.

Another way that MCs can be extended is by allowing dependence on more than previous state, i.e., allowing
the order to be larger than 1. Graphical examples of zeroth-order, first-order, and second-order MCs are
shown below:

0th-order: x0 x1 x2 x3 x4 x5 · · ·

1st-order: x0 x1 x2 x3 x4 x5 · · ·

2nd-order: x0 x1 x2 x3 x4 x5 · · ·

· · ·

Example 14.2 ([2]). More accurate models can produce more realistic data, as shown in the following
example from Shannon on modeling English text as a MC.

1. Zero-order approximation with uniform distribution (symbols are independent and equally probable).

XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGXYD QPAAMKBZAACIB-
ZLHJQD

2. Zero-order approximation (symbols independent but their probability is the same as English text).

OCRO IlLI RGWR NMIELWIS EU LL NBNESEBYA TH EEl ALHENHTTPA OOBTTVA
NAH BRL

Farzad Farnoud 142 University of Virginia



EPL Chapter 14. Markov Chains

3. First-order approximation (digram structure; the conditional probability of each symbol given the
previous is like English).

ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONASIVE
TUCOOWE AT TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE

4. Second-order approximation (trigram structure as in English).

IN NO 1ST LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF DEMON-
STURES OF THE REPTAGIN IS REGOACTIONA OF CRE

5. Zero-Order Word approximation; words are chosen independently but with their appropriate frequen-
cies.

REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN DIFFERENT
NATURAL HERE HE THE A IN CAME THE TO OF TO EXPERT GRAY COME TO
FURNISHES THE LINE MESSAGE HAD BE THESE.

6. First-Order Word approximation; the word transition probabilities are as in English text.

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE
CHARACTER OF THIS POINT IS THEREFORE ANOTHER METHOD FOR THE LET-
TERS THAT THE TIME OF WHO EVER TOLD THE PROBLEM FOR AN UNEX-
PECTED

△

14.2 State distribution as a function of time
Consider a MC with m states. Let πt = (πt1, πt2, . . . , πtm) denote the probability distribution over the
states at time t, where πtj = p(xt = j). Usually, π0, or equivalently, p(x0) is given. We have the following
recursion,

πtj =

m∑
i=1

p(xt−1 = i)p(xt = j|xt−1 = i) =

m∑
i=1

πt−1,iPij ,

or more compactly
πt = πt−1P and πt = π0P

t.

Furthermore, the ijth element of P t, shown as (P t)ij , is the probability of ending up in state j in t steps if
we start from state i.

Example 14.3 (Example 14.1 continued). Suppose π0 = (1, 0)T , i.e., the patient starts in remission. Then,

π1 = (1, 0)

(
0.8 0.2
0.5 0.5

)
= (0.8, 0.2), π2 = π1

(
0.8 0.2
0.5 0.5

)
= (0.74, 0.26)

π5 = π0P
5 = (0.71498, 0.28502), π10 = π0P

10 = (0.71429, 0.28571)

So after 10 days, the probability of being in remission is about 71%.

Now suppose the patient starts in relapse. Then

π1 = (0.5, 0.5), π2 = (0.65, 0.35)

π5 = (0.71255, 0.28745), π10 = (0.71428, 0.28572)

We can see that, interestingly, π5 and π10 are very close to each other and almost independent of π0. We
will study this further in the next section. △
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14.3 Long-term Behavior of Markov Chains
What happens to a MC if we let it run for a long time? This problem is of interest in a variety of contexts,
e.g., the Page-rank algorithm above and sampling methods discussed later. We saw in the previous example
that as t grows the distribution over the states appears to settle down on a certain distribution, which is
called the limiting distribution. In the example, the limiting distribution was independent of the initial
distribution. In this section, we will study when and why this happens.

A stationary distribution of a MC is a distribution σ that satisfies

σ = σP.

Any finite-state Markov chain has at least one stationary distribution [1]. The limiting distribution, if it
exists, must be a stationary distribution.

Example 14.4 (Example 14.3 continued). The stationary distribution σ = (σ1, σ2) is obtained by solving
(σ1, σ2) = (σ1, σ2)P and σ1 + σ2 = 1. It can be shown that the unique solution to these equations is

σ = (5/7, 2/7) = (0.71429, 0.28571),

which indeed appears to be the limiting distribution regardless of the initial distribution. △

Graph vs. transition matrix. Whether or not a MC converges to a unique limiting distribution is
determined by P . This dependence is only on Pij being zero or nonzero but not how large the values are
otherwise. The zero/positive status of each transition probability is given by the MC graph—an edge from
states i to state j exists if and only if Pij > 0. So the graph is sufficient to decide whether the MC will
converge to a unique stationary distribution.

First, let us see some examples when the stationary distribution is not unique:

1 2 3 1 2 3

On the left, the limiting distribution depends on the initial distribution. This arises because of a lack of
connectivity between the states. On the right a limiting distribution does not exist because the chain is
periodic in a certain sense.

We can eliminate both of these possibilities by defining regular Markov chains. A Markov chain is regular
if there is a positive integer k such that for all i and j it is possible to go from state i to state j in k steps.
This is equivalent to (P k)ij > 0 for all i, j and also equivalent to the existence of a path of length k between
any two states. In Example 14.1, we have k = 1.

Theorem 14.5. If a MC with transition matrix P is regular, then there exists a unique distribution σ such
that σ = σP and for any π0, we have πt = π0P

t → σ as t→∞.

The above theorem guarantees that regular MCs converge to their unique stationary distributions. Further-
more, since we can choose π0 to have a 1 in any position, the theorem also implies that each row of P t

converges to σ.

Example 14.6 (Example 14.4 continued). Indeed, σ = (5/7, 2/7) = (0.71429, 0.28571) is the stationary
distribution of

P =

(
0.8 0.2
0.5 0.5

)
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0
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Empirical Distribution

Figure 14.1: In the Markov chain (left), edges between different nodes have probability 1/5 and the prob-
ability of self loops is such that the outgoing probabilities sum to 1. The stationary distribution and an
empirical (time-averaged) distribution are given on the right.

and πt → σ regardless of π0 as we saw in Example 14.1. Furthermore,

P 2 =

(
0.74 0.26
0.65 0.35

)
, P 5 =

(
0.71498 0.28502
0.71255 0.28745

)
, P 10 =

(
0.71429 0.28571
0.71428 0.28572

)
△

14.3.1 How often does the Markov Chain visit each state?
For a regular MC with stationary distribution σ, we know if t is large, at time t, the probability of being
in state j is σj . But in a time period of length N , how many times state j is visited? The answer is
approximately Nσj if N is large. (While this seems natural, similar statements do not necessarily hold for
other random processes.)

For example, for a chain with transition matrix,

P =
1

5


1 1 1 1 1
0 4 0 1 0
1 1 1 1 1
1 1 1 2 0
0 1 0 1 3

,
whose graph is shown in Figure 14.1 (left), a simulation of length 1000 time units produced an empirical
distribution close to the stationary distribution. The first 20 samples are as follows: 32244322242222244122.
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14.4 Balance Properties and Finding the Stationary Distribution

14.4.1 Detailed Balance
A distribution π satisfies the Detailed Balance Property (DBP) if

πiPij = πjPji.

Theorem 14.7. For a regular MC, if a vector π satisfies the detailed balance property, then π is the unique
stationary distribution (π = σ).

Proof. From Theorem 14.5, we know that the stationary distribution is unique, i.e., there is a unique σ
satisfying σ = σP . So it suffices to show that π satisfies the equation π = πP , where P is the transition
matrix. For all j,

πj = πj
∑
i

Pji =
∑
i

πjPji =
∑
i

πiPij .

Hence, π = πP .

Exercise 14.8. Using DBP, find the stationary distribution for the following MCs.

1 21− α

α

1− β

β

1 2 31/2

1/2

1/2

1/2 1/2

1/2

△

If our MC is regular and DBP holds, then we have the stationary distribution. This approach, if possible,
is an easy way to find the stationary distribution. For this reason, DBP is commonly used in Markov Chain
Monte Carlo (MCMC) methods which we discuss later.

14.4.2 Time-Reversibility **
Consider the Markov chain

x0 x1 · · · xt−1 xt xt+1 · · · xT

and assume that πt = σ, where σ is a stationary distribution. suppose that we run the chain backward in
time (or play a movie of it backward). Note that the Markov property still holds as

p(xt|xt+1, . . . , xT ) = p(xt|xt+1)

So what are the transition probabilities P− for the reversed MC? We have

P−
ij = p(xt = j|xt+1 = i) =

p(xt = j, xt+1 = i)

p(xt+1 = i)
=
πjPji

πi
.

The MC is called time-reversible if P− = P , which is equivalent to πiPij = πjPji for all i, j, which are the
detailed balance equations.
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14.4.3 Global Balance **
A distribution π over the states of the MC satisfies the Global Balance Property (GBP) if for any
partition1 {R,L} of the states of the MC, we have∑

i∈L

πi
∑
j∈R

Pij =
∑
j∈R

πj
∑
i∈L

Pji.

In particular, for any node i,
πi
∑
j ̸=i

Pij =
∑
j ̸=i

πjPji.

It is not difficult to show mathematically that any stationary distribution σ of the Markov chain satisfies
the global balance property. To see this intuitively, imagine Alice performs a random walk over the state-
transition graph, going from state to state according to the transition probabilities P . Assume that π0 = σ,
i.e., Alice chooses her initial position according to σ. It follows that πt = σ. DuringN steps, whereN is large,
the number of times that Alice goes from a state in L to a state in R is approximately N

∑
i∈L πi

∑
j∈R Pij .

Similarly, the number of times that Alice goes from R to L is about
∑

j∈R πj
∑

i∈L Pji. Since Alice cannot
disappear, we must have

∑
i∈L πi

∑
j∈R Pij =

∑
j∈R πj

∑
i∈L Pji.

We can use the GBP to find the stationary distribution as shown in the next example.

Example 14.9. Consider a chain with

P =

0 1
2

1
2

1
3 0 2

3
2
3

1
3 0

.
1

2 3

1/2

1/21/3

2/3

2/3

1/3

The DBP equations are

π1 ·
1

2
= π2 ·

1

3

π1 ·
1

2
= π3 ·

2

3

π2 ·
2

3
= π3 ·

1

3
,

which are not satisfiable. Visually, from the diagram above we may also have guessed that the flow of
probability is more counterclockwise than clockwise, and so each pair of states is unbalanced.

1A partition of a set S is a collection of disjoint sets whose union is equal to S.
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The GBP equations are

π1 · (
1

2
+

1

2
) = π2 ·

1

3
+ π3 ·

2

3

π2 · (
1

3
+

2

3
) = π1 ·

1

2
+ π3 ·

1

3

π3 · (
2

3
+

1

3
) = π1 ·

1

2
+ π2 ·

2

3

which are satisfied for π2 = 12
14π1 and π3 = 15

14π1. Taking into account the fact that the probabilities must
sum to 1, we find π1 = 14

41 , π2 = 12
41 , π3 = 15

41 . △
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Chapter 15

Sampling Methods

15.1 Introduction
In Bayesian inference, distributions are the ultimate tool for representing knowledge about unknown quan-
tities. This is the reason that we try to find p(θ|D). If we have the distribution, we can find the expected
value of various functions of the unknown quantity and in this way find point estimates or the probability
of an event,

θ̂Bayes = E[Θ|D],
p(θ ∈ A|D) = E[1(Θ ∈ A)|D],

where A is an event and 1(condition) equals 1 if the condition holds and is 0 otherwise.

If we find the posterior distribution in closed form and it turns out to be one of the common distributions,
e.g., Gaussian, Poisson, etc, then typically, we can easily compute expected values. However, this is not
always the case, and we may face two difficulties:

1. Sometimes all we have is a function q(θ) that is proportional to p(θ|D),

p(θ|D) ∝ p(θ)p(D|θ) = q(θ)

and we are not even able to compute p(θ|D) for a given θ because the normalization factor is not
known.

2. Even if we can compute p(θ|D), computing expected values requires integration, which may be com-
putationally infeasible.

In such cases, sampling from this distribution will be useful because sampling allows us to find expected
values. For a function h, by the law of large numbers we have the following approximation

E[h(X)] ≃
N∑
i=1

h(xi),

where xi are independent samples drawn from the distribution pX with respect to which the expected value
is to be computed.

For example, recall that in Bayesian linear regression, a common likelihood is

y|θ, σ2 ∼ N (Xθ, σ2I),

with prior
p(θ, σ2) ∝ 1/σ2.
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For this model, we found p(θ|D, σ2) and p(σ2|D) and stated that while it is possible to obtain p(θ|D)
analytically, doing so is complicated. In practice, we proceed computationally by generating samples from
p(σ2|y) and then p(θ|y, σ2). With this sampling approach we can also perform prediction for a given input
vector xn+1 of by producing samples from p(yn+1|θ, σ2) ∼ N (xT

n+1θ, σ
2), and answer question such as

finding p(yn+1 > a|θ, σ2) for a given constant a.

In this chapter, we will discuss methods for generating samples from a distribution p(θ) which we can only
compute up to a multiplicative constant. The approach is identical for conditional distributions such as
p(θ|D). To emphasize the fact that the constant may not be known, we use p to refer to the true distribution
and q to the “distribution” without the constant. We will use Ep to denote expectation with respect to
distribution p. For a non-normalized distribution q we define Eq = Ep.

15.2 Basic Sampling Techniques
In this section, we will review some basic but useful sampling techniques.

15.2.1 Deterministic Integration
This method is not actually a sampling method but rather tries to approximate the expected value by
approximating the corresponding integral over a grid,

Eq[h(θ)] =

ˆ
h(θ)q(θ)dθ ≃

∑N
i=1 h(θi)q(θi)∑N

i=1 q(θi)
,

where θi form a uniform grid covering the support of q. This method becomes computationally prohibitive
if the number of dimensions of θ is large.

15.2.1.1 The Inverse-CDF Method

Suppose θ is one dimensional and that we have the CDF F (θ). First, assume θ is continuous and F (θ) is
invertible. Inverse-CDF sampling relies on sampling from the uniform distribution to generate samples for
potentially more complex distributions. For i = 1, . . . , N ,

1. Generate Ui ∼ Uni[0, 1];

2. Let θi = F−1(Ui).

Claim: If U ∼ Uni[0, 1], then θ = F−1(U) has CDF F . To see this observe that:

p(θ ≤ c) = p(F−1(u) ≤ c) = p(U ≤ F (c)) = F (c).

The algorithm is slightly modified if F has discontinuities or is not invertible. Specifically, we define F−1(u) =
min{x : F (x) ≥ u}.

15.2.2 Rejection Sampling
In rejection sampling, to produce samples for a distribution q, we first produce samples from another distri-
bution g but then only keep some of the samples produced in a way that the resulting distribution is q. The
distribution g needs to satisfy

g(θ) > 0, if q(θ) > 0,

q(θ) ≤Mg(θ) for some known M and for all θ.

We also need to sample u ∼ Uni(0, 1).

Rejection Sampling

1. Sample θ′ ∼ g.
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2. Sample U ∼ Uni(0, 1).

3. θ ← θ′ if U ≤ q(θ′)
Mg(θ′) . (Accept θ′ as a new sample if U ≤ q(θ′)

Mg(θ′) ; else reject the sample.)

We define the normalizing constants for the distribution,

Zq =

ˆ
q(θ)dθ, Zg =

ˆ
g(θ)dθ.

Note that the probability of a sample being accepted is

p(accepted) =

ˆ
p(θ′, accepted)dθ′ =

ˆ
p(θ′)p(accepted|θ′)dθ′

=

ˆ
g(θ′)

Zg
· q(θ′)

Mg(θ′)
dθ′ =

Zq

MZg
.

Let us now find the distribution for an accepted sample,

p(θ) = p(θ′|accepted)

=
p(θ′)p(accepted|θ′)

p(accepted)

=

g(θ′)
Zg
· q(θ′)
Mg(θ′)

Zq

MZg

=
q(θ′)

Zq
,

which is the desired distribution.

Rejection sampling does not take advantage of all the samples, unlike importance sampling that we will see
next, so in some sense it is inefficient. In particular, if Zq = Zg = 1, then only a fraction of 1

M of the samples
will be accepted. If M is large, i.e., g is not a good match for q, then we lose a lot of samples. But rejection
sampling has a very important property: it is self-evaluating. If we are doing poorly, it is easy to find out by
considering the number of samples that are rejected. This is a property that importance sampling lacks.

Example 15.1. Suppose we need to sample from Beta(3, 2) so we let q(θ) = θ2(1− θ). We would like to do
this by sampling from g(θ) = θ, which we can do using inverse-CDF sampling. First, let us find the required
value for M . Observe that

Mg(θ) ≥ q(θ) ⇐⇒ Mθ ≥ θ2(1− θ) ⇐⇒ M ≥ θ(1− θ).

So the smallest valid value for M is 1/4, which is what we will choose. Note that in practice, we don’t need
to find the smallest possible M . For example, here we could argue that the θ(1 − θ) ≤ 1 and so it would
have been sufficient to let M = 1. The plots of q, g are shown below.
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To generate samples, first we generate samples from Uni(0, 1), obtaining S1 = {x1, . . . , xN}. To generate
samples from g, we use the inverse CDF method. The CDF of g is θ2 and its inverse is

√
θ. So, our samples

become S2 = {θ′1, . . . , θ′N}, where θ′i =
√
xi. We then accept/reject these based on the rejection sampling

rule to obtain S3, which are samples with distribution q. Specifically, for a sample θ′i, we accept it with
probability 4θ′i(1− θ′i). Note that this step again requires generating uniform samples, from Uni(0, 1). The
graphs below show histograms for xi, θ′i and θi, as well as the corresponding normalized pdfs. The histograms
are normalized so that they are valid pdfs. In this experiment, out of the N = 1000 generated samples, 6692
were accepted.
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△

15.2.3 Importance Sampling
Again, suppose we are interested in finding

Eq[h(Θ)],

where Eq denotes expectation with respect to distribution q. Now if q is a complicated distribution, we may
have a hard time sampling from it. Even if we can sample from q, another issue may arise. The values of θ
such that h(θ)q(θ) are large contribute to the expectation significantly. But h(θ)q(θ) may be large in places
where q(θ) is small. So unless we generate a lot of samples, we may not produce one for which h(θ)q(θ) is
large, and thus miss significant contributions to the expectation from such points.

Suppose we have a second (possibly unnormalized) distribution g(θ), which is simpler and from which we
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can produce samples. Ideally, g(θ) is large if q(θ)h(θ) is large. We have

Eq[h(θ)] =

´
h(θ)q(θ)dθ´
q(θ)dθ

=

´
h(θ)[q(θ)/g(θ)]g(θ)dθ´
[q(θ)/g(θ)]g(θ)dθ

=
Eg[h(θ)(q(θ)/g(θ))]

Eg[q(θ)/g(θ)]
.

So we have converted the problem into expectation with respect to g. Define w(θ) = q(θ)
g(θ) as the importance

weight or ratio at θ. Then we can estimate Eq[h(θ)] as

Eq[h(θ)] =
Eg[h(θ)w(θ)]

Eg[w(θ)]
≃

1
N

∑N
i=1 h(θi)w(θi)

1
N

∑N
i=1 w(θi)

, with θi ∼ g(θ),

by producing samples from g rather than q.

Of course, if g is small where h × q is large, we may miss samples for which h(θ)g(θ) makes significant
contributions to the expectation; and this is a drawback of importance sampling.

Example 15.2. Let h(x) = 1− x and q(x) = x for 0 ≤ x ≤ 1. Then

Eq[h(x)] =

ˆ 1

0

(1− x)(2x)dx =
(
x2 − 2x3/3

)1
0
= 1/3.

To estimate this computationally, let g(x) = 1. The weights become w(x) = x. Generating N = 100 samples
xi ∼ Uni(0, 1) using MATLAB, we find

Eq[h(x)] ≃
∑N

i=1(1− xi)xi∑N
i=1 xi

= 0.34623,

which is close to 0.33 · · · . Of course, for such a simple q we wouldn’t resort to importance sampling. △

15.3 Metropolis Monte Carlo
To generate samples from a distribution p(θ), one possible approach is to design a Markov chain whose
state space includes all possible values for θ and its stationary distribution σ = σ(θ) is equal to the target
distribution p(θ). In the long term, the number of times that the MC spends in a given state is proportional
to the probability of that state. Hence, we can generate samples from the states of the Markov process by
letting it run for a long time and record the states that are visited as samples. The distribution of these
samples is approximately the same as σ and thus the same as p(θ). This is called Markov Chain Monte
Carlo (MCMC).

In this section, we present elegant solutions to the challenging problem of finding a MC satisfying σ(θ) = p(θ).
In fact, these methods only need q ∝ p. While MCs can generate samples with the same distribution, we
note that the samples are not independent.

We will first discuss the Metropolis algorithm. This algorithm requires a jump distribution, J(θ′|θ), which
proposes a new state θ′ given that we are in state θ. We then either move to θ′ or stay at the current
state. The jump distribution is chosen in a way that it guarantees σ(θ) = p(θ). We next describe the
Metropolis algorithm more formally. We assume θ is one dimensional for simplicity of notation but this is
not a requirement.

Metropolis Algorithm:

1. Choose θ0 such that q(θ) > 0.
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2. For t = 1, 2, 3, · · · , do

(a) Generate a proposal θ′ based on the jump distribution J(θ′|θt−1).

(b) Move to θ′ with probability

r =
q(θ′)

q(θt−1)
.

Specifically:

i. Generate u ∼ Uni[0, 1].

ii. The next state of the MC, θt, is given by

θt =

{
θ′, u ≤ r
θt−1, u > r

(15.1)

The transition probabilities. The rule (15.1) has interesting implications. Note that if r > 1, or
equivalently if q(θ′) > q(θt−1), then we will definitely move to θ′. Otherwise, we move to θ′ with probability
r = q(θ′)

q(θt−1) = p(θ′)
p(θt−1) . Define D = {θ : p(θ) > 0} as the set of all possible values of θ based on target

distribution p. If the transition probability of θa → θb in the MC is denoted by Pr(θa → θb), we have

Pr(θa → θb) = J(θb|θa)min

(
1,
p(θb)

p(θa)

)
.

The jump distribution. In the Metropolis algorithm, it is not necessary for the jump distribution to
have p(θ) as a stationary distribution. However, the jump distribution J(θ′|θt−1) should satisfy certain
constraints, discussed below.

1. Reachability. To ensure that the MC is regular, we require that

J(θ′|θ) > 0, ∀θ, θ′ ∈ D. (15.2)

2. Symmetry. For θa, θb ∈ D, the detailed balance property with distribution π(θ) = p(θ) can be written
as

p(θa) Pr(θa → θb) = p(θb) Pr(θb → θa).

Assume without loss of generality that p(θa) < p(θb). Then, the DBP can be written as

p(θa)J(θb|θa) = p(θb)J(θa|θb)
p(θa)

p(θb)
.

which is satisfied if the jump distribution is symmetric, i.e.,

J(θ′|θ) = J(θ|θ′), ∀θ, θ′ ∈ D. (15.3)

If the jump distribution satisfies (15.2) and (15.3), then the MC is regular and σ(θ) = p(θ) satisfies the DBP.
Hence, p(θ) is the unique stationary distribution of the Markov chain.

Example 15.3. Consider a Bayesian regression problem where the data as in Figure 15.1a. The data is
generated using the distribution

yi|θ, σ ∼ N (θxi, σ
2),

where the true values are θ = 2, σ = 1. The figure provides a plot for the samples D = {(xi, yi)Ni=1}, where
xi = 0, 0.1, 0.2, . . . , 5 as well as the line y = 2x.
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(a) Data as well as the true (noiseless) line y = θx,
with θ = 2.
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(b) Metropolis sampling for θ and σ. The first 10 samples
are marked with ∗.

Figure 15.1: Metropolis sampling for 1-D Bayesian linear regression.

As we have seen, the Bayesian posteriors for this problem are rather complicated. But it is straightforward
to obtain estimates using Metropolis sampling. Assuming the prior p(θ, σ) ∝ 1/σ2, the posterior is

ln p(θ, σ|D) ∝ −(2 +N) lnσ − 1

2σ2
(y − θx)′(y − θx).

We use log-probability because probabilities may be very small and for numerical precision, it is better to
work with logs. We can convert these to probabilities if we need to. But in this problem, since we are only
interested in the samples, we can keep probabilities in log scale.

The samples produced by Metropolis are given in Figure 15.1b. As the jump proposal, we use a product of
independent Gaussians:

J(θ′, σ′|θ, σ) = J(θ′|θ)J(σ′|σ),
J(θ′|θ) ∼ N (θ, 0.01),

J(σ′|σ) ∼ N (σ, 0.01).

Based on these samples, the posterior mean for θ is 1.9911 with posterior std 0.055163. The posterior mean
for σ is found to be 1.0198. It is also worth noting that the ML estimate for θ is 1.9896. In this example,
the estimates are very accurate, which is probably the result of a combination of low noise in the data and
chance. △

Metropolis-Hastings algorithm. We can eliminate the symmetry property of the jump distribution if
we modify r in the Metropolis algorithm as

r =
p(θ′)/J(θ′|θt−1)

p(θt−1)/J(θt−1|θ′) .
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(a) Large jumps cause many proposals to be rejected,
making the chain stay in its current state.

(b) Small jumps exhibit a random walk behavior which
does not necessarily explore the space efficiently.

Figure 15.2: Metropolis sampling with poorly designed jump distributions (4 runs for each case).

Exercise 15.4. Prove that with this definition for r, DBP holds even if J is not symmetric. △

Sampling from a MC. Ideally, we should keep only one sample from every m samples for m “large
enough” to ensure that the samples are nearly independent. However, there are two issues here:

• It is not easy to determine how large is “large enough.”

• If m is too large, the process is inefficient.

However, as long as the empirical distribution (e.g., the histogram) is close to the target distribution, we
are not too concerned about independence and the sampling algorithm does not need to throw away any
samples, since the order of the samples is not considered. Because the samples at the start states don’t
satisfy the stationary distribution, it is a good idea to discard the samples produced by the chain at the
beginning.

Strong dependence between samples that are close to each other in time could be problematic. For example,
suppose we get N samples from a chain whose samples are strongly dependent during intervals of duration
not much smaller than N . While each of the N samples may individually have the target distribution, due
to strong dependence they all may be from the same area of the probability space and thus the empirical
distribution may not look like the target distribution, necessitating obtaining a larger number of samples.
This problem can be caused by choosing a poor jump distribution as discussed next.

The Jump distribution. The jumps should be neither too small nor too large!

• When the jumps are large, a large number of proposals will be rejected (we’ll stay in the current
state) because it is likely that with a large jump, we’ll end up with a low probability proposal. In this
case, strong dependence manifests as many samples being likely to be equal. An example is shown in
Figure 15.2a, where most of the proposals are rejected, resulting in a small number of distinct samples.

• If the jumps are too small, the sampling process is similar to a random walk, because most proposals
are accepted but we move only a small step. This means that the MC does not explore the probability
space efficiently, again necessitating a large number of samples. An example is given in Figure 15.2b.
To see why random walk behavior is not good, consider a random walk with step size ε. How far from
the starting point will we be after T steps? For the random walk, let Xi be the movement in one step:

Xi =

{
ε, with p = 1

2 ;

−ε, with p = 1
2 .
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After T steps, the expected distance L = E
[
|∑T

i=1Xi|
]

is difficult to find. But we can approximate
the distance as

L2 ≃ E

[
(

T∑
i=1

Xi)
2

]
= Tε2 (exercise).

In conclusion, after T steps, we will be approximately at distance
√
Tε, which is a case of diminishing

returns, and not very efficient. In other words, we need L2

ε2 steps to move distance L. In the context of
MCMC, this means if the probability space has a dimension in which there is a high probability region
with length L, we need to run the chain for at least L2

ε2 steps.

15.4 Gibbs Sampling
At each iteration of the Metropolis algorithm, all the components of θ are updated at the same time. In
Gibbs sampling, for θ = (θ1, θ2, · · · , θd), at each iteration, components are updated one-by-one as

θtj ∼ p(θj |θt1, · · · , θt(j−1), θ
(t−1)
(j+1), · · · , θt−1

d ), for j = 1, . . . , d.

Gibbs sampling may be simpler and more efficient than Metropolis sampling if the joint distribution is too
complicated but we can easily sample from the conditional distributions. The components do not need to be
one-dimensional necessarily; we can group several dimensions and update each the dimensions in each group
simultaneously.

Example 15.5. Suppose θ = (θ1, θ2) and the observation y = (y1, y2) are related by the likelihood(
y1
y2

)
|
(
θ1
θ2

)
∼ N

((
θ1
θ2

)
,

(
1 ρ
ρ 1

))
,

with the prior p(θ) ∝ 1. The posterior distribution p(θ|y) is:(
θ1
θ2

)
|
(
y1
y2

)
∼ N

((
y1
y2

)
,

(
1 ρ
ρ 1

))

We can use Gibbs sampling to produce samples for θ|y. The following fact is of use:(
x1
x2

)
∼ N

((
µ1

µ2

)
,

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

))
⇒ x1|x2 ∼ N

(
µ1 +

ρσ1
σ2

(x2 − µ2), (1− ρ2)σ2
1

)

Then, in the t-th iteration, the θt1 is sampled by

θt1|θt−1
2 ∼ N

(
y1 + ρ(θt−1

2 − y2), (1− ρ2)
)
.

Similarly, the θt2 can be updated by

θt2|θt1 ∼ N
(
y2 + ρ(θt1 − y1), (1− ρ2)

)
.

So we produce a new sample using 1-D distributions. △

Stationary distribution. We prove that Gibbs sampling (with a caveat) satisfies the DBP with distri-
bution p(θ).

Suppose we are in state θ and we update the jth component to get θ′. We have

θ′j ∼ p(θ′j |θ−j),

where θ−j = (θ1, . . . , θj−1, θj+1, . . . , θd). Furthermore, the θ′
−j = θ−j .
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(a) Four runs of the Metropolis algorithm. (b) Four runs of the Gibbs algorithm.

Figure 15.3: Metropolis and Gibbs sampling for highly correlated dimensions. Many proposals for Metropolis
are rejected.

To prove DBP for this step, we need to prove p(θ) Pr(θ → θ′) = p(θ′) Pr(θ′ → θ), which holds since

p(θ) Pr(θ → θ′) = p(θ)p(θ′j |θ−j) = p(θ−j)p(θj |θ−j)p(θ
′
j |θ−j),

p(θ′) Pr(θ′ → θ) = p(θ′)p(θj |θ′
−j) = p(θ−j)p(θ

′
j |θ−j)p(θj |θ−j).

Since the DBP holds for each sub-iteration. We can use this observation to prove that Gibbs sampling works
if we choose a component to update at random to produce a new sample or if we update all components in
a random order and after a full cycle produce a new sample. Updating the components in a predetermined
order works in practice.

Gibbs sampling can be viewed as a special case of Metropolis-Hastings in which the proposal is always
accepted and where we don’t need to design a jump distribution. Gibbs can use the current state to provide
better proposals. An example is shown in Figure 15.3. Here, the dimensions are highly correlated, with most
of the probability concentrated in a narrow region. Because of this, many of the Metropolis proposals are
rejected. Gibbs, which produces samples based on the conditional distribution given the current state, dose
not suffer from this.

Note that θj may be independent from some dimensions of θ−j given others. In particular, if θ denotes the
nodes in a graphical model, given its Markov blanket, θj is independent of other elements of θ−j .

15.5 Hamiltonian Monte Carlo **
One problem with the Metropolis algorithm is that, in certain situations, the proposed θ′ by the jump
distribution may be rejected too often because p(θ′) is much smaller than p(θt−1), in which case we will let
θt = θt−1. While the stationary distribution is still p(θ), too many rejection means that it will take a long
time to get a sample whose empirical distribution is close to the true distribution.

Let us write our target distribution p(θ) as

p(θ) ∝ e−E(θ)

and suppose that we can also compute ∇θE(θ). Note that as E(θ) decreases, the probability increases.

Can we use the fact that we know the gradient to increase the chance of proposals being accepted? At
first glance it may seem that we could let θt = θt−1 − ϵ∇E(θ), similar to gradient descent. But this is a
deterministic path rather than a probabilistic MC.
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A bit of (questionable) physics. Instead, we use an idea from Hamiltonian Mechanics. We can think
of θ as location and of E(θ) as potential energy. Note that lower potential has a higher probability (a
river flows down the valley). Now let us also include momentum (speed) ϕ, which has the same number of
dimensions as θ, in our formulation and define the total energy as

H(θ,ϕ) = E(θ) +K(ϕ),

where K(ϕ) is the Kinetic energy

K(ϕ) =
1

2
ϕTϕ.

With this physical viewpoint, Hamilton’s equations describing the motion of an object with position θ and
momentum ϕ are

θ̇ =
∂θ

∂t
= ϕ

ϕ̇ =
∂ϕ

∂t
= −∇θE(θ)

(A more familiar form of these equations are obtained by representing position with x and speed with v.
Then, ẋ = v, v̇ = −∇xE(x).) It can then be shown that H, the total energy, stays constant in time.

Back to Sampling. Instead of sampling from p(θ), let us define and sample from

p(θ,ϕ) ∝ e−H(θ,ϕ) = e−E(θ)e−K(ϕ),

where K(ϕ) = 1
2ϕ

Tϕ. We will then discard the ϕ component of the samples.

The Hamiltonian Monte Carlo Algorithm is as follows:

1. Randomly choose θ0 from the domain and choose ϕ0 arbitrarily.

2. For t = 1, 2, ..., do

(a) Pick a random momentum ϕ′ according to the distribution p(ϕ) ∝ e−K(ϕ).

(b) Starting from (θt−1,ϕ′), simulate the dynamic system for a certain amount of time according to

θ̇ = ϕ,

ϕ̇ = −∇θE(θ).

The final values of (θ,ϕ) are the new sample, (θt,ϕt).

It can be shown this process leads to a Markov chain whose stationary distribution is p(θ,ϕ). This hinges
on step (a) being reversible and step (b) keeping the Hamiltonian and thus the probability constant.

In practice however, we cannot have a perfect simulation. So instead of step (b) above, we perform the
following:
(2.b)’ For i = 1, 2, . . . , L, perform the following steps, called leapfrog updates:

ϕ← ϕ− 1

2
ϵ∇E(θ)

θ ← θ + ϵϕ

ϕ← ϕ− 1

2
ϵ∇E(θ)
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Let the final (θ,ϕ) be denoted by (θ∗,ϕ∗). If our simulation is perfect, then this can be accepted as the new
state. But because ϵ > 0, we have to perform an accept/reject check similar to Metropolis. That is, we let

r =
e−H(θ∗,ϕ∗)

e−H(θt−1,ϕt−1)
.

If r ≥ 1, we let (θt,ϕt) = (θ∗,ϕ∗). If r ≤ 1, then we let (θt,ϕt) = (θ∗,ϕ∗) with probability r and with
probability 1− r, we let (θt,ϕt) = (θt−1,ϕt−1).

If ϵ is too large, our simulation will be too rough, leading to many rejections. In this case, we decrease ϵ and
increase L. On the other hand, if nearly all proposals are accepted, it may be a sign of being too conservative
and not exploring the state space as fast as we can, in which case we can be more efficient by increasing ϵ
and decreasing L.
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Variational Inference *

Consider the inference problem where our objective is to compute the probability distribution of unknown
parameters (Bayesian inference) or latent variables Z, conditioned on observations X = x. Mathematically,
this is represented as

p(z|x) = p(x, z)´
p(x, z)dz

(16.1)

Here, the joint distribution p(x, z) is typically known, either explicitly defined by the model or through
combining p(x|z) and p(z). However, the integral

´
p(x, z)dz, is challenging to compute, especially in

high-dimensional spaces, as it sums over all possible configurations of the latent variables z.

While Monte-Carlo methods enable sampling from the target distribution p(z|x), they are often computa-
tionally intensive. Variational inference, on the other hand, offers a computationally efficient alternative by
approximating p(z|x) through optimization.

Variational inference simplifies the process by approximating the complex posterior distribution p(z|x) with
a more tractable distribution q(z) from a predefined family Q. The objective is to identify q∗ ∈ Q that is
closest to p(z|x) as measured by the KL-divergence, DKL(q(z)||p(z|x)). The optimization problem thus
formulated is

q∗ = argmin
q∈Q

DKL(q(z)||p(z|x)), (16.2)

where
DKL(q(z)||p(z|x)) =

ˆ
q(z) log

q(z)

p(z|x)dz = Eq

[
log

q(Z)

p(Z|x)

]
, (16.3)

with Eq denoting that the expectation assumes distribution q for Z. In variational inference, minimizing
DKL(q(z)||p(z|x)) is preferred over minimizing DKL(p(z|x)||q(z)) because the latter is typically intractable.

Evidence Lower Bound (ELBO): Reformulating the KL-divergence yields:

DKL(q(z)||p(z|x)) =
ˆ
q(z) log

q(z)

p(z|x)dz (16.4)

=

ˆ
q(z) log

q(z)p(x)

p(z,x)
dz (16.5)

=

ˆ
q(z) log

q(z)

p(z,x)
dz + log p(x). (16.6)
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Minimizing the KL-divergence, in this context, is equivalent to maximizing the Evidence Lower Bound
(ELBO), defined as:

L(q) = log p(x)−DKL(q(z)||p(z|x)) (16.7)

=

ˆ
q(z) log

p(x, z)

q(z)
dz (16.8)

=

ˆ
q(z) log p(x, z)dz +H(q). (16.9)

Note that since DKL ≥ 0, ELBO is no greater than log p(x), i.e., log p(x) ≥ L(q). As x is sometimes referred
to as evidence, this observation motivates the name “Evidence Lower Bound” or ELBO.

Why does maximizing L(q) make sense? Let us inspect each term in L(q). The distribution q that max-
imizes

´
q(z) log p(x, z)dz is the one that puts all the probability mass on ẑ = argmaxz log p(x, z) =

argmaxz log p(z|x), i.e., the Bayesian mode point estimator. This is a degenerate distribution that tells us
that Z is equal to ẑ with probability 1. To balance this overconfidence, q that maximizes the second term,
H(q), must be high-entropy.

Alternatively, we can rewrite ELBO in the following way to gain more intuition about why maximizing the
ELBO gives a reasonable approximation [1]. By (16.8),

L(q) =
ˆ
q(z) log

p(z)

q(z)
dz +

ˆ
q(z) log p(x|z)dz (16.10)

= −DKL(q(z)||p(z)) +
ˆ
q(z) log p(x|z)dz. (16.11)

The two terms are now the negative KL divergence between q(z) and the prior p(z), and the expected
likelihood assuming Z ∼ q(z). For the divergence to be small, q(z) is encouraged to be close to the prior.
On the other hand, for the expected likelihood to be large, q(z) should assign more mass to Z that can
better explain our observed data x, i.e., argmaxz p(x|z). So, the solution balances closeness to the prior
with the maximum-likelihood solution, similar to the true posterior.

16.1 Background on Calculus of Variations
Before proceeding further, we review the calculus of variations, a mathematical area that focuses on deter-
mining functions that optimize a functional. A functional F : F → R is a function that maps the elements of
a specified family F of functions to R. In variational inference, the functional is DKL(q(z)||p(z|x)), which
assigns a real number to each choice of q ∈ Q.

A simple class of functionals are those of the form
´
S
J(x, f(x))dz for some function J and set S. For entropy,

H[p] =

ˆ
X
p(x) log

1

p(x)
d(x),

we have J(x, p) = J(p) = p log 1
p . For KL divergence

DKL(q||p) =
ˆ
q(x) log

q(x)

p(x)
,

viewed as a functional of q and for fixed p, we have J(x, q) = q log q
p(x) .

The functional differential of F at f in the direction of ϕ is defined as

lim
ϵ→0

F [f + ϵϕ]− F [f ]
ϵ

=
dF [f + ϵϕ]

dϵ

∣∣∣∣
ϵ=0

This tells us how the functional changes at f if it is perturbed by moving infinitesimally in the “direction”

Farzad Farnoud 162 University of Virginia



EPL Chapter 16. Variational Inference *

of ϕ. This quantity is useful for optimizing a functional, that is, for finding a function that maximizes or
minimizes the functional. We will explore this concept through an analogy to multivariate calculus.

Analogy from multivariate calculus: Consider g : Rn → R, a function that assigns to each vector
x ∈ Rn a real number g(x). If we are at x, how does g change if we move in the direction of some vector v?
The change in g can be quantified by

lim
ϵ→0

g(x+ ϵv)− g(x)
ϵ

This is useful for optimizing g. For instance, if it is 0 for all v, then we are at a local extremum. But for
each vector v, we would need to compute it from scratch. To address this, we define the gradient

∇g =

(
lim
ϵ→0

g(x+ ϵi1)− g(x)
ϵ

, . . . , lim
ϵ→0

g(x+ ϵin)− g(x)
ϵ

)
,

where i1, . . . , in are unit vectors in the standard basis. Then we can find the rate of change for any vector v
as the inner product of the gradient and the v

lim
ϵ→0

g(x+ ϵv)− g(x)
ϵ

= ⟨∇g,v⟩.

Furthermore, for small ϵ,

g(x+ ϵv) ≃ g(x) + ϵ⟨∇g,v⟩.

Back to functionals: For functionals of the form F [f ] =
´
S
J(x, f(x))dx, we can find something similar

to a gradient. Specifically, there is a function ∂F
∂f (x), called a functional derivative such that

dF [f + ϵϕ]

dϵ

∣∣∣∣
ϵ=0

=

ˆ
X

∂F

∂f
(x)ϕ(x)dx

This derivative measures how the functional F [f ] changes when the function f is perturbed infinitesimally
at the point x.

The Defining the inner product in the space of functions as ⟨f(x), g(x)⟩ =
´
X f(x)g(x)dx for some predeter-

mined set X , we can write

dF [f + ϵϕ]

dϵ

∣∣∣∣
ϵ=0

⟨∂F
∂f

(x), ϕ(x)⟩

F [f + ϵϕ] ≃ F [f ] + ϵ⟨∂F
∂f

(x), ϕ(x)⟩

Observe that

dF [f + ϵϕ]

dϵ

∣∣∣∣
ϵ=0

=
d

dϵ

ˆ
J(x, f(x) + ϵϕ(x))dx

∣∣∣∣
ϵ=0

=

ˆ
d

dϵ
J(x, f(x) + ϵϕ(x))dx

∣∣∣∣
ϵ=0

=

ˆ
J2(x, f(x))ϕ(x)dx,

where J2 is the prtial dervative of J with respect to its second argument.

Hence,
∂F

∂f
(x) = J2(x, f(x))

Farzad Farnoud 163 University of Virginia



EPL Chapter 16. Variational Inference *

Example 16.1. Let us find ∂H[p]
∂p (x) where H is the entropy function. Here, we have J(x, p) = p log 1

p .
Hence,

∂H[p]

∂p
(x) =

∂(p log 1
p )

∂p
(x) = log

1

p(x)
− 1.

△

Example 16.2. For fixed p, let us find ∂DKL(q||p)
∂q (x). Here, we have J(x, q) = q log q

p(x) . Hence,

∂DKL

∂q
(x) =

∂(q log q
p(x) )

∂q
(x) = 1 + log

q(x)

p(x)
.

△

Optimization of Functionals: Now that we have functional derivatives, we can optimized functionals
by setting the derivative to 0. When we have constrained, we can use Lagrange multipliers.

Example 16.3. We find the distribution with the highest possible entropy with variance at most σ2, i.e.,

maximize H[p]

s.t. S[p] =
ˆ
p(x)dx = 1

V [p] =

ˆ
p(x)x2dx = 1

Using Lagrange multipliers:
∂H

∂p
(x) + λ1

∂S

∂p
(x) + λ2

∂V

∂p
(x) = 0

Hence,

log
1

p(x)
+ λ1 + λ2x

2 = 0⇒ p(x) = eλ1+λ2x
2

.

This is a Gaussian distribution. Since we know which Gaussian distribution has variance sigma2, we have

p(x) =
1√
2πσ2

ex
2/σ2

.

We could also find the constants by solving the constraint equations. Note that the mean is arbitrary. △

Example 16.4. For fixed p, let us find the distribution that minimizes DKL(q||p), i.e.,

maximize DKL(q||p)

s.t. S[q] =
ˆ
q(x)dx = 1

Again, using Lagrange multipliers, we have

1 + log
q(x)

p(x)
+ λ1 = 0⇒ q(x) = q(x) ∝ p(x),

which, along with the constraint, leads to
q(x) = p(x).

△
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16.2 Mean-field variational inference
In this chapter, we restrict the “nice” family Q to be the family of distributions that factorize (being tractable
is important!), i.e.,

q(z) =

J∏
j=1

qj(zj), (16.12)

where z1, z2, . . . , zJ form a partition of all hidden variables in z. This is called the mean-field approximation
and leads to

L(q) =
ˆ J∏

j=1

qj(zj) log p(x, z)dz +

J∑
j=1

H(qj). (16.13)

Coordinate ascent variational inference (CAVI)

L(q) is a functional of J functions. The most common way for optimizing (16.13) is coordinate ascent. In
other words, we will take turns to optimize L(q) with respect to one component qi while fixing the others
qj , j ̸= i. Now, let us assume that we fix qj for all j ̸= i. We can write the ELBO as

L(q) =
ˆ J∏

j=1

qj(zj) log p(x, z)dz +

J∑
j=1

H(qj) (16.14)

=
∑
j ̸=i

H(qj) +H(qi) +

ˆ
qi(zi)

ˆ ∏
j ̸=i

qj(zj) log p(x, z)dz−i

dzi (16.15)

=
∑
j ̸=i

H(qj) +H(qi) +

ˆ
qi(zi)f̃i(zi)dzi, (16.16)

where z−i = {zj}j ̸=i and

f̃i(zi) =

ˆ ∏
j ̸=i

qj(zj) log p(x, z)dz−i (16.17)

=

ˆ
q−i(z−i) log p(x, z)dz−i (16.18)

= Ez−i∼q−i [log p(x, z)], (16.19)

where q−i = {qj}j ̸=i.

Taking the derivative, we have

∂L(q)
∂qi

(zi) = log
1

qi(zi)
− 1 + f̃i(zi) = 0⇒ qi(zi) ∝ exp(f̃i(zi)).

So we update qi to

q∗i (zi) =
exp
(
f̃i(zi)

)
´
exp
(
f̃i(zi)

)
dzi

. (16.20)

So q∗i (zi) is also a distribution over zi and since f̃i(zi) is a function of zi and does not depend on qi, neither
does

´
exp
(
f̃i(zi)

)
dzi.

We summarize the above process in the following algorithm.
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Algorithm 1 Coordinate ascent variational inference (CAVI)

1: Input: visible variables x; latent variables z = (z1, . . . , zJ); joint distribution p(x, z);
2: Output: an approximation for p(z|x);
3: Initialize distributions q1, . . . , qJ over z1, . . . , zJ , respectively;
4: while not converged do
5: for i = 1 to J do
6: f̃i(zi) = Ez−i∼q−i

[log p(x, z)];

7: qi(zi) =
exp(f̃i(zi))´
exp(f̃i(zi))dzi

;

8: end for
9: end while

Note that the update rule (16.20) is given in the form of a function involving an integration. In actual
implementation, we often derive a parametric form based on q∗i (zi) ∝ exp

(
f̃i(zi)

)
and perform update over

the “variational” parameters. Especially when variables zi are discrete, we can always represent qi by k − 1
parameters, where k is the number of possible values that zi can take.

16.3 Examples
Next, let us take a look at two examples, one in discrete case and the other in continuous case. The examples
are adopted from [3] and [1].

16.3.1 CAVI on a MRF for image denoising
Consider the task of denoising an image using the following MRF

x1

x2

x3

x4

x5

x6

y1

y2

y3

y4

y5

y6

with energy function

E(x,y) = −
m∑
i=1

αixi −
∑

(i,j)∈E(G)

βi,jxixj −
m∑
i=1

ζixiyi,

where E(G) is the set of edges between neighboring pixels and βi,j , ζi > 0. In this task, the visible variables
are the noisy pixels yi and hidden variables are pixels xi. All variables are discrete and take values in
{+1,−1}.
To recover the original image based on its noisy version, let us apply CAVI to obtain the distribution of x
given y. The joint distribution p(x,y) is

p(x,y) =
1

Z
e−E(x,y), Z =

∑
x

∑
y

e−E(x,y). (16.21)

We now assume a distribution q(x) that factorizes:

q(x) =

m∏
i=1

qi(xi). (16.22)
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Let Eqi [xi] = µi. Since every xi takes two values, it suffices to optimize the ELBO over µi. We have

log q∗i (xi) = Eq−i
[log p(x,y)] + const (16.23)

= Eq−i
[−E(x,y)− logZ] + const (16.24)

= Eq−i

 m∑
i

αixi +
∑

(i,j)∈E(G)

βi,jxixj +

m∑
i

ζixiyi − logZ

+ const (16.25)

= Eq−i

αixi +
∑

j∈E(xi)

βi,jxixj + ζixiyi

+ const (16.26)

= αixi +
∑

j∈E(xi)

βi,jxiµj + ζixiyi + const, (16.27)

where E(xi) is the set of neighbors of xi.

It follows that

q∗i (xi = 1) =
efi

efi + e−fi
=

1

1 + e−2fi
, (16.28)

where fi = αi +
∑

j∈E(xi)
βi,jµj + ζiyi. Hence, the updating rules are given by

µ∗
i = +1 · q∗i (xi = 1) + (−1) · q∗i (xi = −1) =

1

1 + e−2fi
− 1

1 + e2fi
. (16.29)

16.3.2 Bayesian estimation of a univariate Gaussian [3]
Another application where we need to do inference about hidden variables given the visible ones is in
Bayesian estimation. For a prior p(θ) and evidence p(D|θ), we find an approximation for the posterior
p(θ|D) ∝ p(θ)p(D|θ) by maximizing the ELBO

L(q) = log p(D)−KL(q(θ)||p(θ|D)) =
ˆ
q(θ) log p(D,θ)dθ +H(q). (16.30)

univariate Guassian Consider Bayesian modeling of a univariate Gaussian. Let our data x follow a
Gaussian distribution N

(
µ, λ−1

)
, where λ is the precision. Here we use precision λ as the parameter instead

of the variance to simplify our computation.

The likelihood is thus given by

p(D|µ, λ) =
(
λ

2π

)N/2 N∏
n=1

exp

(
−λ
2
(xn − µ)2

)
. (16.31)

We pick the conjugate Gaussian-Gamma prior of the form

p(λ; a0, b0) = Gamma(a0, b0) =
λa0−1 exp(−b0λ)ba0

0

Γ(a0)
, (16.32)

p(µ|λ;µ0, κ0) = N
(
µ0, (κ0λ)

−1
)
=

(
κ0λ

2

)1/2

exp

(
−κ0λ

2
(µ− µ0)

2

)
, (16.33)

p(µ, λ;µ0, κ0, a0, b0) = GaussGamma(µ0, κ0, a0, b0) (16.34)

∝ λa0− 1
2 exp(−b0λ) exp

(
−κ0

2
(µ− µ0)

2
λ
)
. (16.35)

Then, Eλ = a0/b0,Eµ = µ0,Var[λ] = a0/b
2
0,Var[µ] = b0/(κ0(a0 − 1)).
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We are interested in the posterior

p(µ, λ|D) ∝ p(µ, λ)p(D|µ, λ). (16.36)

Exact posterior ** The exact posterior can be shown to be

p(µ, λ|D) = GaussGamma

(
κ0µ0 +Nx̄

κ0 +N
,κ0 +N, a0 +

N

2
, b0 +

1

2

(
Ns+

κ0N(x̄− µ0)
2

κ0 +N

))
, (16.37)

where x̄ = 1
N

∑N
n=1 xn, s =

1
N

∑N
n=1(xn − x̄)

2.

Approximate posterior Next, we approximate p(µ, λ|D) by

q(µ, λ) = qµ(µ)qλ(λ). (16.38)

Let us derive the updating rules needed by CAVI. Suppose we begin with two guesses qµ(µ) and qλ(λ). By
(16.20),

log q∗µ(µ) = Eqλ [log p(D, µ, λ)] + const (16.39)
= Eqλ [log p(D|µ, λ) + log p(µ|λ)] + const (16.40)

= Eqλ

[
−λ
2

(
N∑

n=1

(xn − µ)2 + κ0(µ− µ0)
2

)]
+ const (16.41)

= −Eqλ [λ]

2

(
N∑

n=1

(xn − µ)2 + κ0(µ− µ0)
2

)
+ const (16.42)

⇒ q∗µ(µ) ∼ N
(
ν, τ−1

)
, ν =

κ0µ0 +
∑N

n=1 xn
N + κ0

, τ = (N + κ0)Eqλ [λ]. (16.43)

Further,

log q∗λ(λ) = Eqµ [log p(D, µ, λ)] + const (16.44)
= Eqµ [log p(D|µ, λ) + log p(µ|λ) + log p(λ)] + const (16.45)

= Eqµ

[
N

2
log

(
λ

2π

)
+

N∑
n=1

(
−λ
2
(xn − µ)2

)
+

1

2
log

(
κ0λ

2

)
+

(
−κ0λ

2
(µ− µ0)

2

)
(16.46)

+ (a0 − 1) log λ+ (−b0λ)
]
+ const (16.47)

= Eqµ

[(
N + 1

2
+ a0 − 1

)
log λ+

(
−1

2

N∑
n=1

(xn − µ)2 −
κ0
2
(µ− µ0)

2 − b0
)
λ

]
+ const (16.48)

=

(
N + 1

2
+ a0 − 1

)
log λ−

(
b0 + Eqµ

[
1

2

N∑
n=1

(xn − µ)2 +
κ0
2
(µ− µ0)

2

]
λ

)
+ const (16.49)

(16.50)
⇒ q∗λ(λ) ∼ Gamma(a, b), (16.51)

where

a =
N + 1

2
+ a0, b = b0 +

1

2
Eqµ

[
N∑

n=1

(xn − µ)2 + κ0(µ− µ0)
2

]
. (16.52)
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As we can see from (16.43) and (16.51), qµ is a Gaussian and qλ is a Gamma. Therefore, in practice, we can
initialize with these parametric forms and do updating on their parameters. Note that we did not specify
the Gaussian and Gamma parametric forms beforehand.

The updating rules for parameters ν, τ, a, b are thus

ν =
κ0µ0 +

∑N
n=1 xn

N + κ0
, (16.53)

τ = (N + κ0)Eqλ [λ] = (N + κ0)
a

b
, (16.54)

a =
N + 1

2
+ a0, (16.55)

b = b0 +
1

2
Eqµ

[
N∑

n=1

(xn − µ)2 + κ0(µ− µ0)
2

]
(16.56)

= b0 +
1

2

((
N∑

n=1

x2n

)
+ κ0µ

2
0 − 2

(
N∑

n=1

xn + κ0µ0

)
Eqµ [µ] + (N + κ0)Eqµ

[
µ2
])

(16.57)

= b0 +
1

2

((
N∑

n=1

x2n

)
+ κ0µ

2
0 − 2

(
N∑

n=1

xn + κ0µ0

)
ν + (N + κ0)

(
ν2 + τ−1

))
. (16.58)

Figure 16.1 shows the updates when we apply CAVI to approximate the posterior of Gaussian parameters.

16.4 Factorized variational approximations are compact
The variational approximations q(z) tend to be more compact than the actual posterior p(z|x). This is
partly due to the natural asymmetry of KL-divergence. Consider that we approximate p(x) using q(x) by
minimizing

DKL(q(x)||p(x)) =
∑
x

q(x) log
q(x)

p(x)
. (16.59)

It can be seen that when p(x) is close to 0, q(x) being large will contribute a large positive value to the KL.
Therefore, to minimize DKL(q(x)||p(x)), wherever p(x) is small, q(x) must also be small. q(x) thus has a
tendency of “shrinking” to only regions where p(x) is not close to 0, shown in Figure 16.2a.

On the other hand, if we instead minimize

DKL(p(x)||q(x)) =
∑
x

p(x) log
p(x)

q(x)
, (16.60)

then wherever p(x) is large, q(x) must also be large. Therefore, q(x) will have a tendency of “covering”
regions where p(x) is positive, shown in Figure 16.2b.
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(a) Initial estimates (b) Update qµ once

(c) Update qλ once (d) Update qµ for the second time

(e) Update qλ for the second time

Figure 16.1: CAVI for the mean µ and precision λ of a univariate Gaussian distribution.
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(a) (b)

Figure 16.2: Approximating a bimodal distribution with a uni-modal distribution. Figures are from [2].
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Chapter 17

Appendix

17.1 Review of Linear Algebra
For two vectors x,y ∈ Rn, the inner product ⟨x,y⟩ of x and y is

x =

x1...
xn

, y =

y1...
yn

, ⟨x,y⟩ = xTy =

n∑
i=1

xiyi. (17.1)

where xT is the transpose of x.

The length or the ℓ2 norm of a vector x is ∥x∥ = ∥x∥2 =
√
xTx and we have ∥x∥22 = xTx. Let α be the

angle between x and y. Then xTy = ∥x∥∥y∥ cosα. If xTy = 0, then the two are called orthogonal.

x

y

x

y

α

x

y

x

y

α

For a collection of vectors v1, . . . ,vm, a linear combination of these is any vector of the form a1v1 +
· · · + amvm, ai ∈ R. The set of all linear combinations of v1, . . . ,vm is their span and denoted as
Span{v1, . . . ,vm}. This is a subspace (think line, plane, or the whole space). For a matrix A, the span of
the columns of A is the column space of A.

x

y

v1

v2

2v2 + 0.5v1
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The vectors v1, . . . ,vm are linearly independent if there is no vector among them that can be written as
a linear combination of the others, and linearly dependent otherwise. The vectors are linearly independent if
and only if the only values for a1, . . . , am satisfying a1v1+ · · ·+amvm = 0 are a1, . . . , am = 0. In particular,
the columns of a matrix A are linearly independent if and only if the only vector a satisfying Aa = 0 is
a = 0.

The inverse of a square matrix A is a matrix A−1 such that AA−1 = A−1A = I, where I is the identity
matrix, which has 1s on the diagonal and 0s elsewhere. A matrix that has an inverse is called invertible.
For a square matrix A, the following are equivalent:

• It is invertible.

• For all distinct vectors a and b, we have Aa ̸= Ab.

• The only solution to Ax = 0 is x = 0.

• Its columns are linearly independent.

• Its determinant |A| is nonzero. (We also have |A−1| = 1
|A| .)

Given a subspace S (e.g., a plane or the column space of a matrix) and a vector y, let ŷ be the vector in the
subspace that is closest to y. That is, we find ŷ ∈ S such that ∥y − ŷ∥ is minimized. Then ŷ is called the
projection of y onto the subspace S.

x

y

S

y

ŷ

y − ŷ

Lemma 17.1 (Projection Lemma). Let ŷ be the projection of a vector y onto a subspace S. Then y − ŷ is
orthogonal to every vector in S.

Proof. Suppose that this is not the case. Then there is a nonzero vector v ∈ S such that (y− ŷ)Tv ̸= 0. We
will show that this contradicts the minimality of ∥y − ŷ∥. For any a ∈ R,

∥y − ŷ − av∥22 = (y − ŷ − av)T (y − ŷ − av) (17.2)

= ∥y − ŷ∥22 − 2avT (y − ŷ) + a2∥v∥22. (17.3)

This is a convex function in a. So setting the derivative to 0 gives the value of a that minimizes the error:

∂

∂a
∥y − ŷ − av∥22 = −2vT (y − ŷ) + 2a∥v∥22 = 0⇒ a =

vT (y − ŷ)

∥v∥22
̸= 0. (17.4)

Let

ŷ′ = ŷ +
vT (y − ŷ)

vTv
v, (17.5)

and note that ŷ′ is also in S but it is closer to y, contradicting the optimality of ŷ.
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17.2 Vector and matrix differentiation
Definition 17.2 (The three derivatives). For a matrix A, scalar z, and two vectors x,y (possibly one-
dimensional), let

dA

dz
=


∂A11

∂z · · · ∂A1n

∂z
...

. . .
...

∂Am1

∂z · · · ∂Amn

∂z

, dz

dA
=


∂z

∂A11
· · · ∂z

∂A1n

...
. . .

...
∂z

∂Am1
· · · ∂z

∂Amn

, dy

dx
=


∂y1

∂x1
· · · ∂y1

∂xm

...
. . .

...
∂yn

∂x1
· · · ∂yn

∂xm


Lemma 17.3. For a scalar a, vectors x,y,v, and constant matrices A and S,

dy

dv
=
dy

dx

dx

dv
,

d

dv
(ax) = a

dx

dv
+ x

da

dv
,

d

dv
(yTAx) = yTA

dx

dv
+ xTAT dy

dv
,

d

dv
(yTSy) = 2yTS

dy

dv
, (S is symmetric)

d

dv
(Ax) = A

dx

dv
.

Lemma 17.4. For matrix A and constant vector x,

d

dA
(xTAx) = xxT

d

dA
ln |A| = A−T

Definition 17.5. Let f : Rm → R. The gradient of f(x) with respect to x is defined as

∇xf(x) =

(
df(x)

dx

)T

=


∂f(x)
∂x1

...
∂f(x)
∂xm


and the Hessian of f(x) with respect to x is defined as

Hx(f(x)) =
d∇xf(x)

dx
=


∂f(x)
∂x1∂x1

· · · ∂f(x)
∂xm∂x1

...
. . .

...
∂f(x)

∂x1∂xm
· · · ∂f(x)

∂xm∂xm


Chain rule. Consider h : Rm → R, g : R→ R, and f(x) = g(h(x)). From Lemma 17.3,

∇f(x) = g′(h(x))∇h(x),
Hf(x) = g′(h(x))Hh(x) + g′′(h(x))∇h(x)∇Th(x)
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since

Hf(x) =
d∇f
dx

=
d(g′(h(x))∇h(x))

dx

= g′(h(x))
d∇h(x)
dx

+∇h(x)d(g
′(h(x)))

dx

= g′(h(x))Hh(x) +∇h(x)∇Th(x)g′′(h(x))

Example 17.6. Let us find the derivatives of f(x) = log
∑m

i=1 e
xi . Let z = (exp(xi))

m
i=1 so that f(x) =

log 1Tz.

∇f(x) = z

1Tz
,

Hf(x) =
diag(z)

1Tz
− zzT

(1Tz)2
.

△

Chain rule. Let h = (h1, . . . , hn) : Rm → Rn, g : Rn → R, and f(x) = g(h(x)). Then

∂f

∂xi
=

n∑
j=1

∂g

∂hj

∂hj
∂xi

=
dg

dh
· dh
dxi

= ∇T g · dh
dxi

,

df

dx
=
dg

dh

dh

dx
= ∇T g

dh

dx
, ∇xf =

(
df

dx

)T

=

(
dh

dx

)T

∇g
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