
Chapter 17

Appendix

17.1 Review of Linear Algebra
For two vectors x,y ∈ Rn, the inner product ⟨x,y⟩ of x and y is

x =

x1

...
xn

, y =

y1
...
yn

, ⟨x,y⟩ = xTy =

n∑
i=1

xiyi. (17.1)

where xT is the transpose of x.

The length or the ℓ2 norm of a vector x is ∥x∥ = ∥x∥2 =
√
xTx and we have ∥x∥22 = xTx. Let α be the

angle between x and y. Then xTy = ∥x∥∥y∥ cosα. If xTy = 0, then the two are called orthogonal.

x

y

x

y

α

x

y

x

y

α

For a collection of vectors v1, . . . ,vm, a linear combination of these is any vector of the form a1v1 +
· · · + amvm, ai ∈ R. The set of all linear combinations of v1, . . . ,vm is their span and denoted as
Span{v1, . . . ,vm}. This is a subspace (think line, plane, or the whole space). For a matrix A, the span of
the columns of A is the column space of A.
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The vectors v1, . . . ,vm are linearly independent if there is no vector among them that can be written as
a linear combination of the others, and linearly dependent otherwise. The vectors are linearly independent if
and only if the only values for a1, . . . , am satisfying a1v1+ · · ·+amvm = 0 are a1, . . . , am = 0. In particular,
the columns of a matrix A are linearly independent if and only if the only vector a satisfying Aa = 0 is
a = 0.

The inverse of a square matrix A is a matrix A−1 such that AA−1 = A−1A = I, where I is the identity
matrix, which has 1s on the diagonal and 0s elsewhere. A matrix that has an inverse is called invertible.
For a square matrix A, the following are equivalent:

• It is invertible.

• For all distinct vectors a and b, we have Aa ̸= Ab.

• The only solution to Ax = 0 is x = 0.

• Its columns are linearly independent.

• Its determinant |A| is nonzero. (We also have |A−1| = 1
|A| .)

Given a subspace S (e.g., a plane or the column space of a matrix) and a vector y, let ŷ be the vector in the
subspace that is closest to y. That is, we find ŷ ∈ S such that ∥y − ŷ∥ is minimized. Then ŷ is called the
projection of y onto the subspace S.
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Lemma 17.1 (Projection Lemma). Let ŷ be the projection of a vector y onto a subspace S. Then y − ŷ is
orthogonal to every vector in S.

Proof. Suppose that this is not the case. Then there is a nonzero vector v ∈ S such that (y− ŷ)Tv ̸= 0. We
will show that this contradicts the minimality of ∥y − ŷ∥. For any a ∈ R,

∥y − ŷ − av∥22 = (y − ŷ − av)T (y − ŷ − av) (17.2)

= ∥y − ŷ∥22 − 2avT (y − ŷ) + a2∥v∥22. (17.3)

This is a convex function in a. So setting the derivative to 0 gives the value of a that minimizes the error:

∂

∂a
∥y − ŷ − av∥22 = −2vT (y − ŷ) + 2a∥v∥22 = 0 ⇒ a =

vT (y − ŷ)

∥v∥22
̸= 0. (17.4)

Let

ŷ′ = ŷ +
vT (y − ŷ)

vTv
v, (17.5)

and note that ŷ′ is also in S but it is closer to y, contradicting the optimality of ŷ.
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17.2 Vector and matrix differentiation
Definition 17.2 (The three derivatives). For a matrix A, scalar z, and two vectors x,y (possibly one-
dimensional), let

dA

dz
=


∂A11

∂z · · · ∂A1n

∂z
...

. . .
...

∂Am1

∂z · · · ∂Amn

∂z

,
dz

dA
=


∂z

∂A11
· · · ∂z

∂A1n

...
. . .

...
∂z

∂Am1
· · · ∂z

∂Amn

,
dy

dx
=


∂y1

∂x1
· · · ∂y1

∂xm

...
. . .

...
∂yn

∂x1
· · · ∂yn

∂xm


Lemma 17.3. For a scalar a, vectors x,y,v, and constant matrices A and S,

dy

dv
=

dy

dx

dx

dv
,

d

dv
(ax) = a

dx

dv
+ x

da

dv
,

d

dv
(yTAx) = yTA

dx

dv
+ xTAT dy

dv
,

d

dv
(yTSy) = 2yTS

dy

dv
, (S is symmetric)

d

dv
(Ax) = A

dx

dv
.

Lemma 17.4. For matrix A and constant vector x,

d

dA
(xTAx) = xxT

d

dA
ln |A| = A−T

Definition 17.5. Let f : Rm → R. The gradient of f(x) with respect to x is defined as

∇xf(x) =

(
df(x)

dx

)T

=


∂f(x)
∂x1

...
∂f(x)
∂xm


and the Hessian of f(x) with respect to x is defined as

Hx(f(x)) =
d∇xf(x)

dx
=


∂f(x)
∂x1∂x1

· · · ∂f(x)
∂xm∂x1

...
. . .

...
∂f(x)

∂x1∂xm
· · · ∂f(x)

∂xm∂xm


Chain rule. Consider h : Rm → R, g : R → R, and f(x) = g(h(x)). From Lemma 17.3,

∇f(x) = g′(h(x))∇h(x),

Hf(x) = g′(h(x))Hh(x) + g′′(h(x))∇h(x)∇Th(x)

since

Hf(x) =
d∇f

dx

=
d(g′(h(x))∇h(x))

dx

= g′(h(x))
d∇h(x)

dx
+∇h(x)

d(g′(h(x)))

dx

= g′(h(x))Hh(x) +∇h(x)∇Th(x)g′′(h(x))
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Example 17.6. Let us find the derivatives of f(x) = log
∑m

i=1 e
xi . Let z = (exp(xi))

m
i=1 so that f(x) =

log 1Tz.

∇f(x) =
z

1Tz
,

Hf(x) =
diag(z)

1Tz
− zzT

(1Tz)2
.

△

Chain rule. Let h = (h1, . . . , hn) : Rm → Rn, g : Rn → R, and f(x) = g(h(x)). Then

∂f

∂xi
=

n∑
j=1

∂g

∂hj

∂hj

∂xi
=

dg

dh
· dh
dxi

= ∇T g · dh
dxi

,

df

dx
=

dg

dh

dh

dx
= ∇T g

dh

dx
, ∇xf =

(
df

dx

)T

=

(
dh

dx

)T

∇g
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