
Chapter 16

Variational Inference *

Consider the inference problem where our objective is to compute the probability distribution of unknown
parameters (Bayesian inference) or latent variables Z, conditioned on observations X = x. Mathematically,
this is represented as

p(z|x) = p(x, z)´
p(x, z)dz

(16.1)

Here, the joint distribution p(x, z) is typically known, either explicitly defined by the model or through
combining p(x|z) and p(z). However, the integral

´
p(x, z)dz, is challenging to compute, especially in

high-dimensional spaces, as it sums over all possible configurations of the latent variables z.

While Monte-Carlo methods enable sampling from the target distribution p(z|x), they are often computa-
tionally intensive. Variational inference, on the other hand, offers a computationally efficient alternative by
approximating p(z|x) through optimization.

Variational inference simplifies the process by approximating the complex posterior distribution p(z|x) with
a more tractable distribution q(z) from a predefined family Q. The objective is to identify q∗ ∈ Q that is
closest to p(z|x) as measured by the KL-divergence, DKL(q(z)||p(z|x)). The optimization problem thus
formulated is

q∗ = argmin
q∈Q

DKL(q(z)||p(z|x)), (16.2)

where
DKL(q(z)||p(z|x)) =

ˆ
q(z) log

q(z)

p(z|x)
dz = Eq

[
log

q(Z)

p(Z|x)

]
, (16.3)

with Eq denoting that the expectation assumes distribution q for Z. In variational inference, minimizing
DKL(q(z)||p(z|x)) is preferred over minimizing DKL(p(z|x)||q(z)) because the latter is typically intractable.

Evidence Lower Bound (ELBO): Reformulating the KL-divergence yields:

DKL(q(z)||p(z|x)) =
ˆ

q(z) log
q(z)

p(z|x)
dz (16.4)

=

ˆ
q(z) log

q(z)p(x)

p(z,x)
dz (16.5)

=

ˆ
q(z) log

q(z)

p(z,x)
dz + log p(x). (16.6)
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Minimizing the KL-divergence, in this context, is equivalent to maximizing the Evidence Lower Bound
(ELBO), defined as:

L(q) = log p(x)−DKL(q(z)||p(z|x)) (16.7)

=

ˆ
q(z) log

p(x, z)

q(z)
dz (16.8)

=

ˆ
q(z) log p(x, z)dz +H(q). (16.9)

Note that since DKL ≥ 0, ELBO is no greater than log p(x), i.e., log p(x) ≥ L(q). As x is sometimes referred
to as evidence, this observation motivates the name “Evidence Lower Bound” or ELBO.

Why does maximizing L(q) make sense? Let us inspect each term in L(q). The distribution q that max-
imizes

´
q(z) log p(x, z)dz is the one that puts all the probability mass on ẑ = argmaxz log p(x, z) =

argmaxz log p(z|x), i.e., the Bayesian mode point estimator. This is a degenerate distribution that tells us
that Z is equal to ẑ with probability 1. To balance this overconfidence, q that maximizes the second term,
H(q), must be high-entropy.

Alternatively, we can rewrite ELBO in the following way to gain more intuition about why maximizing the
ELBO gives a reasonable approximation [1]. By (16.8),

L(q) =
ˆ

q(z) log
p(z)

q(z)
dz +

ˆ
q(z) log p(x|z)dz (16.10)

= −DKL(q(z)||p(z)) +
ˆ

q(z) log p(x|z)dz. (16.11)

The two terms are now the negative KL divergence between q(z) and the prior p(z), and the expected
likelihood assuming Z ∼ q(z). For the divergence to be small, q(z) is encouraged to be close to the prior.
On the other hand, for the expected likelihood to be large, q(z) should assign more mass to Z that can
better explain our observed data x, i.e., argmaxz p(x|z). So, the solution balances closeness to the prior
with the maximum-likelihood solution, similar to the true posterior.

16.1 Background on Calculus of Variations
Before proceeding further, we review the calculus of variations, a mathematical area that focuses on deter-
mining functions that optimize a functional. A functional F : F → R is a function that maps the elements of
a specified family F of functions to R. In variational inference, the functional is DKL(q(z)||p(z|x)), which
assigns a real number to each choice of q ∈ Q.

A simple class of functionals are those of the form
´
S
J(x, f(x))dz for some function J and set S. For entropy,

H[p] =

ˆ
X
p(x) log

1

p(x)
d(x),

we have J(x, p) = J(p) = p log 1
p . For KL divergence

DKL(q||p) =
ˆ

q(x) log
q(x)

p(x)
,

viewed as a functional of q and for fixed p, we have J(x, q) = q log q
p(x) .

The functional differential of F at f in the direction of ϕ is defined as

lim
ϵ→0

F [f + ϵϕ]− F [f ]

ϵ
=

dF [f + ϵϕ]

dϵ

∣∣∣∣
ϵ=0

This tells us how the functional changes at f if it is perturbed by moving infinitesimally in the “direction”
of ϕ. This quantity is useful for optimizing a functional, that is, for finding a function that maximizes or
minimizes the functional. We will explore this concept through an analogy to multivariate calculus.
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Analogy from multivariate calculus: Consider g : Rn → R, a function that assigns to each vector
x ∈ Rn a real number g(x). If we are at x, how does g change if we move in the direction of some vector v?
The change in g can be quantified by

lim
ϵ→0

g(x+ ϵv)− g(x)

ϵ
This is useful for optimizing g. For instance, if it is 0 for all v, then we are at a local extremum. But for
each vector v, we would need to compute it from scratch. To address this, we define the gradient

∇g =

(
lim
ϵ→0

g(x+ ϵi1)− g(x)

ϵ
, . . . , lim

ϵ→0

g(x+ ϵin)− g(x)

ϵ

)
,

where i1, . . . , in are unit vectors in the standard basis. Then we can find the rate of change for any vector v
as the inner product of the gradient and the v

lim
ϵ→0

g(x+ ϵv)− g(x)

ϵ
= ⟨∇g,v⟩.

Furthermore, for small ϵ,

g(x+ ϵv) ≃ g(x) + ϵ⟨∇g,v⟩.

Back to functionals: For functionals of the form F [f ] =
´
S
J(x, f(x))dx, we can find something similar

to a gradient. Specifically, there is a function ∂F
∂f (x), called a functional derivative such that

dF [f + ϵϕ]

dϵ

∣∣∣∣
ϵ=0

=

ˆ
X

∂F

∂f
(x)ϕ(x)dx

This derivative measures how the functional F [f ] changes when the function f is perturbed infinitesimally
at the point x.

The Defining the inner product in the space of functions as ⟨f(x), g(x)⟩ =
´
X f(x)g(x)dx for some predeter-

mined set X , we can write

dF [f + ϵϕ]

dϵ

∣∣∣∣
ϵ=0

⟨∂F
∂f

(x), ϕ(x)⟩

F [f + ϵϕ] ≃ F [f ] + ϵ⟨∂F
∂f

(x), ϕ(x)⟩

Observe that
dF [f + ϵϕ]

dϵ

∣∣∣∣
ϵ=0

=
d

dϵ

ˆ
J(x, f(x) + ϵϕ(x))dx

∣∣∣∣
ϵ=0

=

ˆ
d

dϵ
J(x, f(x) + ϵϕ(x))dx

∣∣∣∣
ϵ=0

=

ˆ
J2(x, f(x))ϕ(x)dx,

where J2 is the prtial dervative of J with respect to its second argument.

Hence,
∂F

∂f
(x) = J2(x, f(x))

Example 16.1. Let us find ∂H[p]
∂p (x) where H is the entropy function. Here, we have J(x, p) = p log 1

p .
Hence,

∂H[p]

∂p
(x) =

∂(p log 1
p )

∂p
(x) = log

1

p(x)
− 1.

△
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Example 16.2. For fixed p, let us find ∂DKL(q||p)
∂q (x). Here, we have J(x, q) = q log q

p(x) . Hence,

∂DKL

∂q
(x) =

∂(q log q
p(x) )

∂q
(x) = 1 + log

q(x)

p(x)
.

△

Optimization of Functionals: Now that we have functional derivatives, we can optimized functionals
by setting the derivative to 0. When we have constrained, we can use Lagrange multipliers.

Example 16.3. We find the distribution with the highest possible entropy with variance at most σ2, i.e.,

maximize H[p]

s.t. S[p] =

ˆ
p(x)dx = 1

V [p] =

ˆ
p(x)x2dx = 1

Using Lagrange multipliers:
∂H

∂p
(x) + λ1

∂S

∂p
(x) + λ2

∂V

∂p
(x) = 0

Hence,

log
1

p(x)
+ λ1 + λ2x

2 = 0 ⇒ p(x) = eλ1+λ2x
2

.

This is a Gaussian distribution. Since we know which Gaussian distribution has variance sigma2, we have

p(x) =
1√
2πσ2

ex
2/σ2

.

We could also find the constants by solving the constraint equations. Note that the mean is arbitrary. △

Example 16.4. For fixed p, let us find the distribution that minimizes DKL(q||p), i.e.,

maximize DKL(q||p)

s.t. S[q] =

ˆ
q(x)dx = 1

Again, using Lagrange multipliers, we have

1 + log
q(x)

p(x)
+ λ1 = 0 ⇒ q(x) = q(x) ∝ p(x),

which, along with the constraint, leads to
q(x) = p(x).

△

16.2 Mean-field variational inference
In this chapter, we restrict the “nice” family Q to be the family of distributions that factorize (being tractable
is important!), i.e.,

q(z) =

J∏
j=1

qj(zj), (16.12)
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where z1, z2, . . . , zJ form a partition of all hidden variables in z. This is called the mean-field approximation
and leads to

L(q) =
ˆ J∏

j=1

qj(zj) log p(x, z)dz +

J∑
j=1

H(qj). (16.13)

Coordinate ascent variational inference (CAVI)

L(q) is a functional of J functions. The most common way for optimizing (16.13) is coordinate ascent. In
other words, we will take turns to optimize L(q) with respect to one component qi while fixing the others
qj , j ̸= i. Now, let us assume that we fix qj for all j ̸= i. We can write the ELBO as

L(q) =
ˆ J∏

j=1

qj(zj) log p(x, z)dz +

J∑
j=1

H(qj) (16.14)

=
∑
j ̸=i

H(qj) +H(qi) +

ˆ
qi(zi)

ˆ ∏
j ̸=i

qj(zj) log p(x, z)dz−i

dzi (16.15)

=
∑
j ̸=i

H(qj) +H(qi) +

ˆ
qi(zi)f̃i(zi)dzi, (16.16)

where z−i = {zj}j ̸=i and

f̃i(zi) =

ˆ ∏
j ̸=i

qj(zj) log p(x, z)dz−i (16.17)

=

ˆ
q−i(z−i) log p(x, z)dz−i (16.18)

= Ez−i∼q−i
[log p(x, z)], (16.19)

where q−i = {qj}j ̸=i.

Taking the derivative, we have

∂L(q)
∂qi

(zi) = log
1

qi(zi)
− 1 + f̃i(zi) = 0 ⇒ qi(zi) ∝ exp(f̃i(zi)).

So we update qi to

q∗i (zi) =
exp
(
f̃i(zi)

)
´
exp
(
f̃i(zi)

)
dzi

. (16.20)

So q∗i (zi) is also a distribution over zi and since f̃i(zi) is a function of zi and does not depend on qi, neither
does

´
exp
(
f̃i(zi)

)
dzi.

We summarize the above process in the following algorithm.
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Algorithm 1 Coordinate ascent variational inference (CAVI)

1: Input: visible variables x; latent variables z = (z1, . . . , zJ); joint distribution p(x, z);
2: Output: an approximation for p(z|x);
3: Initialize distributions q1, . . . , qJ over z1, . . . , zJ , respectively;
4: while not converged do
5: for i = 1 to J do
6: f̃i(zi) = Ez−i∼q−i

[log p(x, z)];

7: qi(zi) =
exp(f̃i(zi))´
exp(f̃i(zi))dzi

;

8: end for
9: end while

Note that the update rule (16.20) is given in the form of a function involving an integration. In actual
implementation, we often derive a parametric form based on q∗i (zi) ∝ exp

(
f̃i(zi)

)
and perform update over

the “variational” parameters. Especially when variables zi are discrete, we can always represent qi by k − 1
parameters, where k is the number of possible values that zi can take.

16.3 Examples
Next, let us take a look at two examples, one in discrete case and the other in continuous case. The examples
are adopted from [3] and [1].

16.3.1 CAVI on a MRF for image denoising
Consider the task of denoising an image using the following MRF

x1

x2

x3

x4

x5

x6

y1

y2

y3

y4

y5

y6

with energy function

E(x,y) = −
m∑
i=1

αixi −
∑

(i,j)∈E(G)

βi,jxixj −
m∑
i=1

ζixiyi,

where E(G) is the set of edges between neighboring pixels and βi,j , ζi > 0. In this task, the visible variables
are the noisy pixels yi and hidden variables are pixels xi. All variables are discrete and take values in
{+1,−1}.

To recover the original image based on its noisy version, let us apply CAVI to obtain the distribution of x
given y. The joint distribution p(x,y) is

p(x,y) =
1

Z
e−E(x,y), Z =

∑
x

∑
y

e−E(x,y). (16.21)

We now assume a distribution q(x) that factorizes:

q(x) =

m∏
i=1

qi(xi). (16.22)
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Let Eqi [xi] = µi. Since every xi takes two values, it suffices to optimize the ELBO over µi. We have

log q∗i (xi) = Eq−i
[log p(x,y)] + const (16.23)

= Eq−i
[−E(x,y)− logZ] + const (16.24)

= Eq−i

 m∑
i

αixi +
∑

(i,j)∈E(G)

βi,jxixj +

m∑
i

ζixiyi − logZ

+ const (16.25)

= Eq−i

αixi +
∑

j∈E(xi)

βi,jxixj + ζixiyi

+ const (16.26)

= αixi +
∑

j∈E(xi)

βi,jxiµj + ζixiyi + const, (16.27)

where E(xi) is the set of neighbors of xi.

It follows that

q∗i (xi = 1) =
efi

efi + e−fi
=

1

1 + e−2fi
, (16.28)

where fi = αi +
∑

j∈E(xi)
βi,jµj + ζiyi. Hence, the updating rules are given by

µ∗
i = +1 · q∗i (xi = 1) + (−1) · q∗i (xi = −1) =

1

1 + e−2fi
− 1

1 + e2fi
. (16.29)

16.3.2 Bayesian estimation of a univariate Gaussian [3]
Another application where we need to do inference about hidden variables given the visible ones is in
Bayesian estimation. For a prior p(θ) and evidence p(D|θ), we find an approximation for the posterior
p(θ|D) ∝ p(θ)p(D|θ) by maximizing the ELBO

L(q) = log p(D)−KL(q(θ)||p(θ|D)) =

ˆ
q(θ) log p(D,θ)dθ +H(q). (16.30)

univariate Guassian Consider Bayesian modeling of a univariate Gaussian. Let our data x follow a
Gaussian distribution N

(
µ, λ−1

)
, where λ is the precision. Here we use precision λ as the parameter instead

of the variance to simplify our computation.

The likelihood is thus given by

p(D|µ, λ) =
(

λ

2π

)N/2 N∏
n=1

exp

(
−λ

2
(xn − µ)2

)
. (16.31)

We pick the conjugate Gaussian-Gamma prior of the form

p(λ; a0, b0) = Gamma(a0, b0) =
λa0−1 exp(−b0λ)b

a0
0

Γ(a0)
, (16.32)

p(µ|λ;µ0, κ0) = N
(
µ0, (κ0λ)

−1
)
=

(
κ0λ

2

)1/2

exp

(
−κ0λ

2
(µ− µ0)

2

)
, (16.33)

p(µ, λ;µ0, κ0, a0, b0) = GaussGamma(µ0, κ0, a0, b0) (16.34)

∝ λa0− 1
2 exp(−b0λ) exp

(
−κ0

2
(µ− µ0)

2
λ
)
. (16.35)

Then, Eλ = a0/b0,Eµ = µ0,Var[λ] = a0/b
2
0,Var[µ] = b0/(κ0(a0 − 1)).

We are interested in the posterior

p(µ, λ|D) ∝ p(µ, λ)p(D|µ, λ). (16.36)
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Exact posterior ** The exact posterior can be shown to be

p(µ, λ|D) = GaussGamma

(
κ0µ0 +Nx̄

κ0 +N
,κ0 +N, a0 +

N

2
, b0 +

1

2

(
Ns+

κ0N(x̄− µ0)
2

κ0 +N

))
, (16.37)

where x̄ = 1
N

∑N
n=1 xn, s =

1
N

∑N
n=1(xn − x̄)

2.

Approximate posterior Next, we approximate p(µ, λ|D) by

q(µ, λ) = qµ(µ)qλ(λ). (16.38)

Let us derive the updating rules needed by CAVI. Suppose we begin with two guesses qµ(µ) and qλ(λ). By
(16.20),

log q∗µ(µ) = Eqλ [log p(D, µ, λ)] + const (16.39)

= Eqλ [log p(D|µ, λ) + log p(µ|λ)] + const (16.40)

= Eqλ

[
−λ

2

(
N∑

n=1

(xn − µ)
2
+ κ0(µ− µ0)

2

)]
+ const (16.41)

= −Eqλ [λ]

2

(
N∑

n=1

(xn − µ)
2
+ κ0(µ− µ0)

2

)
+ const (16.42)

⇒ q∗µ(µ) ∼ N
(
ν, τ−1

)
, ν =

κ0µ0 +
∑N

n=1 xn

N + κ0
, τ = (N + κ0)Eqλ [λ]. (16.43)

Further,

log q∗λ(λ) = Eqµ [log p(D, µ, λ)] + const (16.44)
= Eqµ [log p(D|µ, λ) + log p(µ|λ) + log p(λ)] + const (16.45)

= Eqµ

[
N

2
log

(
λ

2π

)
+

N∑
n=1

(
−λ

2
(xn − µ)

2

)
+

1

2
log

(
κ0λ

2

)
+

(
−κ0λ

2
(µ− µ0)

2

)
(16.46)

+ (a0 − 1) log λ+ (−b0λ)

]
+ const (16.47)

= Eqµ

[(
N + 1

2
+ a0 − 1

)
log λ+

(
−1

2

N∑
n=1

(xn − µ)
2 − κ0

2
(µ− µ0)

2 − b0

)
λ

]
+ const (16.48)

=

(
N + 1

2
+ a0 − 1

)
log λ−

(
b0 + Eqµ

[
1

2

N∑
n=1

(xn − µ)
2
+

κ0

2
(µ− µ0)

2

]
λ

)
+ const (16.49)

(16.50)
⇒ q∗λ(λ) ∼ Gamma(a, b), (16.51)

where

a =
N + 1

2
+ a0, b = b0 +

1

2
Eqµ

[
N∑

n=1

(xn − µ)
2
+ κ0(µ− µ0)

2

]
. (16.52)

As we can see from (16.43) and (16.51), qµ is a Gaussian and qλ is a Gamma. Therefore, in practice, we can
initialize with these parametric forms and do updating on their parameters. Note that we did not specify
the Gaussian and Gamma parametric forms beforehand.
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The updating rules for parameters ν, τ, a, b are thus

ν =
κ0µ0 +

∑N
n=1 xn

N + κ0
, (16.53)

τ = (N + κ0)Eqλ [λ] = (N + κ0)
a

b
, (16.54)

a =
N + 1

2
+ a0, (16.55)

b = b0 +
1

2
Eqµ

[
N∑

n=1

(xn − µ)
2
+ κ0(µ− µ0)

2

]
(16.56)

= b0 +
1

2

((
N∑

n=1

x2
n

)
+ κ0µ

2
0 − 2

(
N∑

n=1

xn + κ0µ0

)
Eqµ [µ] + (N + κ0)Eqµ

[
µ2
])

(16.57)

= b0 +
1

2

((
N∑

n=1

x2
n

)
+ κ0µ

2
0 − 2

(
N∑

n=1

xn + κ0µ0

)
ν + (N + κ0)

(
ν2 + τ−1

))
. (16.58)

Figure 16.1 shows the updates when we apply CAVI to approximate the posterior of Gaussian parameters.

16.4 Factorized variational approximations are compact
The variational approximations q(z) tend to be more compact than the actual posterior p(z|x). This is
partly due to the natural asymmetry of KL-divergence. Consider that we approximate p(x) using q(x) by
minimizing

DKL(q(x)||p(x)) =
∑
x

q(x) log
q(x)

p(x)
. (16.59)

It can be seen that when p(x) is close to 0, q(x) being large will contribute a large positive value to the KL.
Therefore, to minimize DKL(q(x)||p(x)), wherever p(x) is small, q(x) must also be small. q(x) thus has a
tendency of “shrinking” to only regions where p(x) is not close to 0, shown in Figure 16.2a.

On the other hand, if we instead minimize

DKL(p(x)||q(x)) =
∑
x

p(x) log
p(x)

q(x)
, (16.60)

then wherever p(x) is large, q(x) must also be large. Therefore, q(x) will have a tendency of “covering”
regions where p(x) is positive, shown in Figure 16.2b.
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(a) Initial estimates (b) Update qµ once

(c) Update qλ once (d) Update qµ for the second time

(e) Update qλ for the second time

Figure 16.1: CAVI for the mean µ and precision λ of a univariate Gaussian distribution.
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(a) (b)

Figure 16.2: Approximating a bimodal distribution with a uni-modal distribution. Figures are from [2].
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