
Chapter 14

Markov Chains

14.1 Introduction
A Markov chain (MC) is a stochastic process whose future is independent from its past and can be
represented as the following Bayesian network:

x0 x1 · · · xt−1 xt xt+1 · · ·

The value of xt is called the state of the Markov chain at time t. The set of all possible states is the state
space. For example,

• We may represent daily weather with the state space: {sunny, cloudy, rainy}

• The state of the disease in a patient may be represented by a MC with two states: {remission, relapse}.

• The number of animals of a certain species can be represented with states {0, 1, 2, . . . }.

Uncountable state spaces are also possible (e.g., temperature) and we will rely on them for sampling later.
But for simplicity, we focus on finite-state MCs. Also, note that a MC is usually an approximation of the
world since we like to have a small number of states.

To complete the characterization of a MC, we also need to know the CPDs,

p(x0 = i), p(xt+1 = j|xt = i).

We refer to p(x0) as the initial distribution and to the CPD p(xt+1 = j|xt = i) as transition proba-
bilities. We are interested in time-homogeneous MCs only, in which p(xt+1 = j|xt = i) is independent
of t, i.e., the same for all time instances. In such MCs, we can represent the transition probabilities as a
transition matrix A with

Pij = p(xt+1 = j|xt = i),

which is particularly useful if the state space is a finite set.

Example 14.1. In a Markov chain representing the health of a patient, if we let 1 represent ‘remission’ and
2 represent ‘relapse,’ we may have

P =

(
0.8 0.2
0.5 0.5

)
.

△
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Given that the important features of a time-homogeneous MC are its state space and transition probabilities,
it is useful to represent the chain as graph, called the state-transition graph, whose nodes are the states
and edges represent transitions and their probabilities. For example, for a disease, we may have

Remission Relapse0.8

0.2

0.5

0.5

Here are some other examples of common MCs:

• Random walk on a grid (1D, 2D, ...). For example, in the 1-dimensional case, we can move left or
right at random. This extends to n dimensions. In this context, “a drunk man will find his way home,
but a drunk bird may get lost forever.”

• Page-rank. This is closely related to the previous chain, except that this time the states are webpages,
and we click on a link in the current page to transition to another one. This was the main idea behind
Google search’s ranking of web pages, using stationary probabilities (more on these below).

• DNA mutations. There are four states {A,C,G, T} and due to mutations, a position in the genome
may change from one state to another. Several variations are used in phylogenetics.

As stated before, MCs are usually approximations of real phenomena because we cannot include all relevant
information in the state. As an example, consider a MC for weather. Suppose our chain represents a short
period where seasonal effects are negligible and so we can assume the chain to be time-homogeneous. Each
state of the MC could be the total amount of precipitation. This is already useful since a rainy day is more
likely after a rainy day than after a sunny day. But if we add information about temperature, cloud cover,
air pressure, etc., the model becomes more accurate and useful.

Another way that MCs can be extended is by allowing dependence on more than previous state, i.e., allowing
the order to be larger than 1. Graphical examples of zeroth-order, first-order, and second-order MCs are
shown below:

0th-order: x0 x1 x2 x3 x4 x5 · · ·

1st-order: x0 x1 x2 x3 x4 x5 · · ·

2nd-order: x0 x1 x2 x3 x4 x5 · · ·

· · ·

Example 14.2 ([2]). More accurate models can produce more realistic data, as shown in the following
example from Shannon on modeling English text as a MC.

1. Zero-order approximation with uniform distribution (symbols are independent and equally probable).

XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGXYD QPAAMKBZAACIB-
ZLHJQD

2. Zero-order approximation (symbols independent but their probability is the same as English text).

OCRO IlLI RGWR NMIELWIS EU LL NBNESEBYA TH EEl ALHENHTTPA OOBTTVA
NAH BRL
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3. First-order approximation (digram structure; the conditional probability of each symbol given the
previous is like English).

ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONASIVE
TUCOOWE AT TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE

4. Second-order approximation (trigram structure as in English).

IN NO 1ST LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF DEMON-
STURES OF THE REPTAGIN IS REGOACTIONA OF CRE

5. Zero-Order Word approximation; words are chosen independently but with their appropriate frequen-
cies.

REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN DIFFERENT
NATURAL HERE HE THE A IN CAME THE TO OF TO EXPERT GRAY COME TO
FURNISHES THE LINE MESSAGE HAD BE THESE.

6. First-Order Word approximation; the word transition probabilities are as in English text.

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE
CHARACTER OF THIS POINT IS THEREFORE ANOTHER METHOD FOR THE LET-
TERS THAT THE TIME OF WHO EVER TOLD THE PROBLEM FOR AN UNEX-
PECTED

△

14.2 State distribution as a function of time
Consider a MC with m states. Let πt = (πt1, πt2, . . . , πtm) denote the probability distribution over the
states at time t, where πtj = p(xt = j). Usually, π0, or equivalently, p(x0) is given. We have the following
recursion,

πtj =

m∑
i=1

p(xt−1 = i)p(xt = j|xt−1 = i) =

m∑
i=1

πt−1,iPij ,

or more compactly
πt = πt−1P and πt = π0P

t.

Furthermore, the ijth element of P t, shown as (P t)ij , is the probability of ending up in state j in t steps if
we start from state i.

Example 14.3 (Example 14.1 continued). Suppose π0 = (1, 0)T , i.e., the patient starts in remission. Then,

π1 = (1, 0)

(
0.8 0.2
0.5 0.5

)
= (0.8, 0.2), π2 = π1

(
0.8 0.2
0.5 0.5

)
= (0.74, 0.26)

π5 = π0P
5 = (0.71498, 0.28502), π10 = π0P

10 = (0.71429, 0.28571)

So after 10 days, the probability of being in remission is about 71%.

Now suppose the patient starts in relapse. Then

π1 = (0.5, 0.5), π2 = (0.65, 0.35)

π5 = (0.71255, 0.28745), π10 = (0.71428, 0.28572)

We can see that, interestingly, π5 and π10 are very close to each other and almost independent of π0. We
will study this further in the next section. △
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14.3 Long-term Behavior of Markov Chains
What happens to a MC if we let it run for a long time? This problem is of interest in a variety of contexts,
e.g., the Page-rank algorithm above and sampling methods discussed later. We saw in the previous example
that as t grows the distribution over the states appears to settle down on a certain distribution, which is
called the limiting distribution. In the example, the limiting distribution was independent of the initial
distribution. In this section, we will study when and why this happens.

A stationary distribution of a MC is a distribution σ that satisfies

σ = σP.

Any finite-state Markov chain has at least one stationary distribution [1]. The limiting distribution, if it
exists, must be a stationary distribution.

Example 14.4 (Example 14.3 continued). The stationary distribution σ = (σ1, σ2) is obtained by solving
(σ1, σ2) = (σ1, σ2)P and σ1 + σ2 = 1. It can be shown that the unique solution to these equations is

σ = (5/7, 2/7) = (0.71429, 0.28571),

which indeed appears to be the limiting distribution regardless of the initial distribution. △

Graph vs. transition matrix. Whether or not a MC converges to a unique limiting distribution is
determined by P . This dependence is only on Pij being zero or nonzero but not how large the values are
otherwise. The zero/positive status of each transition probability is given by the MC graph—an edge from
states i to state j exists if and only if Pij > 0. So the graph is sufficient to decide whether the MC will
converge to a unique stationary distribution.

First, let us see some examples when the stationary distribution is not unique:

1 2 3 1 2 3

On the left, the limiting distribution depends on the initial distribution. This arises because of a lack of
connectivity between the states. On the right a limiting distribution does not exist because the chain is
periodic in a certain sense.

We can eliminate both of these possibilities by defining regular Markov chains. A Markov chain is regular
if there is a positive integer k such that for all i and j it is possible to go from state i to state j in k steps.
This is equivalent to (P k)ij > 0 for all i, j and also equivalent to the existence of a path of length k between
any two states. In Example 14.1, we have k = 1.

Theorem 14.5. If a MC with transition matrix P is regular, then there exists a unique distribution σ such
that σ = σP and for any π0, we have πt = π0P

t → σ as t → ∞.

The above theorem guarantees that regular MCs converge to their unique stationary distributions. Further-
more, since we can choose π0 to have a 1 in any position, the theorem also implies that each row of P t

converges to σ.

Example 14.6 (Example 14.4 continued). Indeed, σ = (5/7, 2/7) = (0.71429, 0.28571) is the stationary
distribution of

P =

(
0.8 0.2
0.5 0.5

)
and πt → σ regardless of π0 as we saw in Example 14.1. Furthermore,

P 2 =

(
0.74 0.26
0.65 0.35

)
, P 5 =

(
0.71498 0.28502
0.71255 0.28745

)
, P 10 =

(
0.71429 0.28571
0.71428 0.28572

)
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Figure 14.1: In the Markov chain (left), edges between different nodes have probability 1/5 and the prob-
ability of self loops is such that the outgoing probabilities sum to 1. The stationary distribution and an
empirical (time-averaged) distribution are given on the right.

△

14.3.1 How often does the Markov Chain visit each state?
For a regular MC with stationary distribution σ, we know if t is large, at time t, the probability of being
in state j is σj . But in a time period of length N , how many times state j is visited? The answer is
approximately Nσj if N is large. (While this seems natural, similar statements do not necessarily hold for
other random processes.)

For example, for a chain with transition matrix,

P =
1

5


1 1 1 1 1
0 4 0 1 0
1 1 1 1 1
1 1 1 2 0
0 1 0 1 3

,

whose graph is shown in Figure 14.1 (left), a simulation of length 1000 time units produced an empirical
distribution close to the stationary distribution. The first 20 samples are as follows: 32244322242222244122.

14.4 Balance Properties and Finding the Stationary Distribution

14.4.1 Detailed Balance
A distribution π satisfies the Detailed Balance Property (DBP) if

πiPij = πjPji.

Theorem 14.7. For a regular MC, if a vector π satisfies the detailed balance property, then π is the unique
stationary distribution (π = σ).
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Proof. From Theorem 14.5, we know that the stationary distribution is unique, i.e., there is a unique σ
satisfying σ = σP . So it suffices to show that π satisfies the equation π = πP , where P is the transition
matrix. For all j,

πj = πj

∑
i

Pji =
∑
i

πjPji =
∑
i

πiPij .

Hence, π = πP .

Exercise 14.8. Using DBP, find the stationary distribution for the following MCs.

1 21− α

α

1− β

β

1 2 31/2

1/2

1/2

1/2 1/2

1/2

△

If our MC is regular and DBP holds, then we have the stationary distribution. This approach, if possible,
is an easy way to find the stationary distribution. For this reason, DBP is commonly used in Markov Chain
Monte Carlo (MCMC) methods which we discuss later.

14.4.2 Time-Reversibility **
Consider the Markov chain

x0 x1 · · · xt−1 xt xt+1 · · · xT

and assume that πt = σ, where σ is a stationary distribution. suppose that we run the chain backward in
time (or play a movie of it backward). Note that the Markov property still holds as

p(xt|xt+1, . . . , xT ) = p(xt|xt+1)

So what are the transition probabilities P− for the reversed MC? We have

P−
ij = p(xt = j|xt+1 = i) =

p(xt = j, xt+1 = i)

p(xt+1 = i)
=

πjPji

πi
.

The MC is called time-reversible if P− = P , which is equivalent to πiPij = πjPji for all i, j, which are the
detailed balance equations.

14.4.3 Global Balance **
A distribution π over the states of the MC satisfies the Global Balance Property (GBP) if for any
partition1 {R,L} of the states of the MC, we have∑

i∈L

πi

∑
j∈R

Pij =
∑
j∈R

πj

∑
i∈L

Pji.

In particular, for any node i,
πi

∑
j ̸=i

Pij =
∑
j ̸=i

πjPji.

1A partition of a set S is a collection of disjoint sets whose union is equal to S.
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It is not difficult to show mathematically that any stationary distribution σ of the Markov chain satisfies
the global balance property. To see this intuitively, imagine Alice performs a random walk over the state-
transition graph, going from state to state according to the transition probabilities P . Assume that π0 = σ,
i.e., Alice chooses her initial position according to σ. It follows that πt = σ. During N steps, where N is large,
the number of times that Alice goes from a state in L to a state in R is approximately N

∑
i∈L πi

∑
j∈R Pij .

Similarly, the number of times that Alice goes from R to L is about
∑

j∈R πj

∑
i∈L Pji. Since Alice cannot

disappear, we must have
∑

i∈L πi

∑
j∈R Pij =

∑
j∈R πj

∑
i∈L Pji.

We can use the GBP to find the stationary distribution as shown in the next example.

Example 14.9. Consider a chain with

P =

0 1
2

1
2

1
3 0 2

3
2
3

1
3 0

.
1

2 3

1/2

1/21/3

2/3

2/3

1/3

The DBP equations are

π1 ·
1

2
= π2 ·

1

3

π1 ·
1

2
= π3 ·

2

3

π2 ·
2

3
= π3 ·

1

3
,

which are not satisfiable. Visually, from the diagram above we may also have guessed that the flow of
probability is more counterclockwise than clockwise, and so each pair of states is unbalanced.

The GBP equations are

π1 · (
1

2
+

1

2
) = π2 ·

1

3
+ π3 ·

2

3

π2 · (
1

3
+

2

3
) = π1 ·

1

2
+ π3 ·

1

3

π3 · (
2

3
+

1

3
) = π1 ·

1

2
+ π2 ·

2

3

which are satisfied for π2 = 12
14π1 and π3 = 15

14π1. Taking into account the fact that the probabilities must
sum to 1, we find π1 = 14

41 , π2 = 12
41 , π3 = 15

41 . △
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