
Chapter 10

Parameter Estimation in Graphical
Models

A graphical model has two components: the graph structure (the nodes and their connections), and the
conditional probability distributions/potential functions, which are usually expressed in parametric form. In
this chapter:

• We will consider the problem of estimating the parameters in graphical models. The problem is simpler
in the case of Bayesian networks and for simplicity, that is were our attention will be focused.

• We will not consider the more challenging problem of learning the structure of a network. The best
case scenario is that you have good reason to design a graph in a certain way, e.g., based on causality.

Consider a BN with a known graph with m nodes x1, . . . , xm in which the parameters of the conditional
distribution are unknown. There are m conditional probability distributions (CPDs)1, one for each node,
and each of these has an unknown parameter vector. We denote the concatenated vector of all parameters
as θ = (θ1, . . . ,θm). We collect a dataset D = {x1, . . . ,xn} of n iid samples, where xi = (xi1, . . . , xim). Our
goal is to estimate θ and possibly also to predict the next outcome xn+1 = (xn+1,1, . . . ,xn+1,m).

10.1 MLE for Parameters of Bayesian Networks
We will start with maximum likelihood estimation via an example.

Example 10.1. Consider the network from previous chapters with the vector of parameters θ = (θT , θC ,θA,θB).

T

p(T = 0; θT ) = θT

A
p(A = 0|T = 0;θA) = θA0

p(A = 0|T = 1;θA) = θA1
B

p(B = 0|C = 0, T = 0;θB) = θB00

p(B = 0|C = 0, T = 1;θB) = θB01

p(B = 0|C = 1, T = 0;θB) = θB10

p(B = 0|C = 1, T = 1;θB) = θB11

C

p(C = 0; θC) = θC

1Some of the nodes do not have any parents so their distribution is not conditioned on any other nodes. We view these as
conditioned on the empty set and thus refer to all probability distributions in a Bayesian Network as conditional probability
distributions.
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To collect data, on n days, we record whether there is heavy traffic and whether Alice, Bob, and/or Charlie
are late, resulting in x1, . . . ,xn, where xi = (Ti, Ai, Bi, Ci). Then we maximize the likelihood

argmax
θ

p(D;θ) = arg max
θT ,θA,θB ,θC

p(x1, . . . ,xn; (θT ,θA,θB , θC)) (10.1)

△

Note that in the above example, the maximization evidently involve 6 dimensions. In real-world problems
the networks have many more parameters. This would create computational difficulties since it would
require maximizing a function of many variables. Fortunately, in the case of Bayesian networks, the problem
decomposes to estimating the parameters for each nodes separately, as we will see.

Decomposability of likelihood. For a network with m nodes, parameters θ = (θ1, . . . ,θm) and data
D = (x1, . . . ,xn), the likelihood function is

p(D;θ) =

n∏
i=1

p(xi;θ),

where for the ith data sample, we have

p(xi;θ) =

m∏
j=1

p(xij |pa(xij);θj)

and thus the log-likelihood of the whole dataset is

ℓ(θ) =

n∑
i=1

ln p(xi;θ) =

n∑
i=1

m∑
j=1

ln p(xij |pa(xij);θj) =
m∑
j=1

n∑
i=1

ln p(xij |pa(xij);θj).

Thus for a given j, θj only appears in the term
∑n

i=1 ln p(xij |pa(xij);θj) and no other θk appears in this
term. So each θj , and thus each conditional probability distribution, can be learned independently of the
others, which significantly reduces the complexity.

Exercise 10.2. For the TABC network above, what would our data look like? What is the ML estimate
for each parameter based on this data? △

10.2 Bayesian Parameter Estimation for Bayesian Networks
An alternative approach is using Bayesian inference. Since in the Bayesian view, parameters are considered
random, we can augment the Bayesian network by adding the parameters as nodes.

Side note 1: the plate notation. Before proceeding, we introduce the plate notation which is helpful
for simplifying repeated elements in graphical models, especially a set of iid nodes. Specifically, instead of
repeating a node k times, we enclose one instance and indicate how many times that segment of the graph
is repeated. Both of the following graphs represent the factorization p(y1, . . . , yk, θ) =

∏k
i=1 p(yi|θ).

θ

y1 y2 · · ·

· · ·

yk

≡

yi

k

θ
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Side note 2: Conditioning for sets of nodes. Consider a BN with nodes y1, . . . , ym. Assume that the
set of nodes can be partitioned into two sets S1 = {y1, . . . , yr} and S2 = {yr+1, . . . , ym} such that there are
no edges from S2 to S1. Then the following hold

p(S1) = p(y1, . . . , yr) =

r∏
i=1

p(yi|pa(yi)), (10.2)

p(S2|S1) = p(yr+1, . . . , ym|y1, . . . , yr) =
m∏

i=r+1

p(yi|pa(yi)). (10.3)

However, in general,

p(S2) = p(yr+1, . . . , ym) ̸=
m∏

i=r+1

p(yi|pa(yi)), (10.4)

p(S1|S2) = p(y1, . . . , yr|yr+1, . . . , ym) ̸=
r∏

i=1

p(yi|pa(yi)) (10.5)

Bayesian networks with explicit representation of the parameters and data. Let us consider a
simpler version of the network given in Example 10.1, with unknown parameter vector θ = (θT ,θA,θB):

T

p(T = 0; θT ) = θT

A
p(A = 0|T = 0;θA) = θA0

p(A = 0|T = 1;θA) = θA1
B

p(B = 0|T = 0;θB) = θB0

p(B = 0|T = 1;θB) = θB1

At this point, we are still viewing the parameters as unknown constants. Now to formulate the Bayesian
estimation of these parameters, we need to view them as random and add nodes for them to the graph,
estimating the parameters as the network:

T

p(T = 0, θT ) = θT

A
p(A = 0|T = 0,θA) = θA0

p(A = 0|T = 1,θA) = θA1
B

p(B = 0|T = 0,θB) = θB0

p(B = 0|T = 1,θB) = θB1

θT p(θT )

θB p(θB)

θA p(θA)

Incorporating the n samples D = {(T1, A1, B1), . . . , (Tn, An, Bn)}, we represent the problem of estimating
the parameters as the network, where the CPDs are omitted for clarity:
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Ti

Ai

n

Bi

θT

θB

θA

Posterior distributions of the parameters. We are interested in finding p(θ|D) = p(θT ,θA,θB |D).
Note that

p(θ|D) = p(θT |D)p(θA,θB |D) (10.6)
= p(θT |D)p(θA|D)p(θB |D) (10.7)
= p(θT |Tn

1 )p(θA|Tn
1 , A

n
1 )p(θB |Tn

1 , B
n
1 ), (10.8)

where the first equality follows from the fact that given T i
1 ⊂ D, θT is independent of all other nodes,

including θA,θB . In other words, T i
1 is the Markov blanket of θT . The second equality also holds because D

contains the Markov blanket for θA and θB . Similarly, the last equality follows from a Markov blanket-type
argument.

In other words, to estimate each parameter, we need to only consider the part of the data that is in the
parameter’s Markov blanket. This also makes intuitive sense: For example, to estimate the probability of
Alice being late given the state of traffic, only the part of data that deals with Alice’s arrival time and traffic
is relevant. The fact that the posterior for each parameter can be determined separately significantly reduces
the computational complexity.

Example 10.3. Let us find p(θA|D), assuming that the prior satisfies p(θA) = p(θA0)p(θA1),

p(θA|D) = p(θA|Tn
1 , A

n
1 ) ∝ p(θA)p(T

n
1 , A

n
1 |θA)

(∗)
∝ p(θA)

n∏
i=1

p(Ai|Ti,θA)

=

(
p(θA0)

∏
i:Ti=0

p(Ai|Ti = 0, θA0)

)(
p(θA1)

∏
i:Ti=1

p(Ai|Ti = 1, θA1)

)
.

(Why does the relation shown as
(∗)
∝ hold?) Since the terms depending on θA0 and θA1 separate, they are

conditionally independent and we can estimate them separately: Hence, the estimators of θ0A and θ1A are

p(θA0|D) ∝ p(θA0)
∏

i:Ti=0

p(Ai|Ti = 0, θA0),

p(θA1|D) ∝ p(θA1)
∏

i:Ti=1

p(Ai|Ti = 1, θA1).

Suppose p(θ0A) ∼ Beta(1, 1) and out of 100 days with no traffic, in 40 days Alice was on time. Hence,

θA0|D ∼ Beta(41, 61).

△
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Predicting future outcomes. We can also add future outcomes to predict their value to the network:

Ti

Ai

n

Bi

θT

θB

θA

Tn+1

An+1 Bn+1

Let xn+1 = (Tn+1, An+1, Bn+1). We have

p(xn+1,θ|D) = p(θ|D)p(xn+1|D,θ) = p(θ|D)p(xn+1|θ). (10.9)

We have already seen how to find p(θ|D). We can decompose p(xn+1|θ) as given by the Bayesian network:

p(xn+1|θ) = p(Tn+1|θT )p(An+1|θA, Tn+1)p(Bn+1|θB , Tn+1). (10.10)

Note that the terms on the right are known probability distributions.

Finally, if we are interested in a specific future outcome, e.g., p(An+1|D), we can find it through an appro-
priate integration/summation of p(xn+1,θ|D).

Example 10.4. The posterior probability of the next sample (An+1, Bn+1) is

p(An+1, Bn+1|D) =

ˆ
θ

∑
Tn+1

p(An+1, Bn+1, Tn+1,θ|D)dθ,

where we can find the integrand/summand as described in (10.9). In general, such integrals may be difficult
to find analytically. In practice, we rely on computational methods such as Markov Chain Monte Carlo
(MCMC).

Alternatively, to predict future values, we can use a Bayesian point estimate for θ, and then assume that
they are known as shown below.

T

p(T = 0) = θ̂T

A B

p(B = 0|T = 0) = θ̂B0

p(B = 0|T = 1) = θ̂B1

p(A = 0|T = 0) = θ̂A0

p(A = 0|T = 1) = θ̂A1

△

We can use graphical models to represent some of the estimation/learning problems we have already discussed
in previous chapters.

Example 10.5. Let y have a distribution p with an unknown parameter θ. Below, on the left a graphical
model for y is shown without explicit representation of θ and on the right, θ is added as a node:
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y

p(y; θ)

=⇒
y p(y|θ)

θ p(θ)

We have n independent samples, D = {y1, y2, . . . , yn}, from the distribution and our goal is to predict the
next outcome yn+1. We can augment the graph to represent the problem as follows:

θ

yi

n

yn+1

with a joind distribution that can be written as p(θ, yn1 , yn+1) = p(θ)p(yn1 |θ)p(yn+1|θ).

We can perform similar analysis as we have done in the Bayesian Estimation chapter, using d-separation to
verify independence relations. We have

p(yn+1|yn1 ) =
ˆ
p(yn+1, θ|yn1 )dθ =

ˆ
p(θ|yn1 )p(yn+1|θ, yn1 )dθ =

ˆ
p(θ|yn1 )p(yn+1|θ)dθ

where in the last step we have used yn+1 ⊥⊥ yn1 | θ, which follows from d-separation. Furthermore,

E[yn+1|yn1 ] = E[E[yn+1|θ, yn1 ]|yn1 ] = E[E[yn+1|θ]|yn1 ]. (10.11)

Roughly speaking, to learn about yn+1 given yn1 , we must first learn about θ since this is the node that
connects yn1 and yn+1.

For example, assume p(θ) ∝ 1, yi|θ ∼ Ber(θ), and that out of the n samples yi, there s 1s and f 0s. Then

p(yn+1 = 1|yn1 ) = E[yn+1|yn1 ] = E[E[yn+1|θ]|yn1 ] = E[θ|yn1 ] =
s+ 1

s+ f + 2
.

△

In more general cases, some of the “future outcomes” may also be known. But the same principles discussed
above, still apply.

Example 10.6 (Bayesian Linear Regression). Consider the regression problem

p(yi|xi,θ, σ
2) ∼ N (θTxi, σ

2),

with data D = {(x1, y1), . . . , (xn, yn)}. We are interested in determining p(yn+1|xn+1,D). The problem can
be represented as the graph

θ, σ2

yi

n

xi

yn+1

xn+1
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We note that

p(yn+1,θ, σ
2|xn+1,D) = p(θ, σ2|xn+1,D)p(yn+1|θ, σ2,xn+1,D) (10.12)

= p(θ, σ2|D)p(yn+1|xn+1,θ, σ
2), (10.13)

where we have used the following facts: θ, σ2 ⊥⊥ xn+1|D and yn+1 ⊥⊥ D|xn+1,θ, σ
2. We know how to

find p(θ, σ2|D) and p(yn+1|xn+1,θ, σ
2) is given by assumption. While we can find p(yn+1|xn+1) through

integration analytically, as discussed in the linear regression chapter, we normally produce samples for θ, σ2

and then proceed to produce samples for p(yn+1|xn+1,θ, σ
2).

△

10.3 Parameter Estimation in MRFs
Recall that for an MRF G, the probability distribution is given as

p(x;θ) =
∏

c is a clique in G

ψθ(xc)/Z(θ),

where Z(θ) =
∑

x

∏
c ψθ(xc) is the partition function. Let us consider the frequentist estimation of θ,

e.g., maximum likelihood. Unfortunately, the log-likelihood function does not decompose into terms each
depending on one component of θ. This is due to the presence of the partition function, which generally
depends on all the components of θ, leading to a high-dimensional problem. Furthermore, computing
the partition function is a computationally difficult task since it involves computing a sum with possibly
exponentially many terms. We will discuss computational approaches to this problem later in the course.

Helpful references: [2, 3, 1]
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