
Chapter 5

Linear Regression

5.1 Introduction
The goal of regression is to predict a real value y as a function of the input variable x. (The vector x
is referred to as the feature vector, while y is called the target variable.) For example, in a marketing
campaign, we may be interested in predicting total sales, given ad budgets in various platforms based on
prior experience. Our data is a set of pairs D = {(x1, y1), . . . , (xn, yn)}, collected from n prior ad campaigns
for n previous products,

Product TV ads Print ads Web ads Sale

1 xT
1 = $20k $10k $10k y1 = $500k

...
...

...
i xT

i = xi1 xi2 xi3 yi
...

...
...

n xT
n= xn1 xn2 xn3 yn

If we can predict y for any given value of x, we can predict the outcome of a marketing campaign or optimize
the marketing budget.We can also study what types of ads are more helpful, etc.

In linear regression our prediction for y is ŷ = xTθ, where x and θ are elements of Rd. In our marketing
example, our goal becomes to find θ = (θ1, θ2, θ3) such that ŷ = xTθ = θTx = θ1x1 + θ2x2 + θ3x3 is a good
predictor for y.

From a probabilistic standpoint, we may consider each (xi, yi) to be an independent realization of the random
pair (X, Y ) with some joint distribution pX,Y . We then formulate the linear regression problem as follows:
Find

θ̂ = argmin
θ

E[L(Y,XTθ)], (5.1)

for a given loss function L. As we typically do not have the joint distribution for X, Y , we aim to find

θ̂ = argmin
θ

1

n

n∑
i=1

L(yi,x
T
i θ). (5.2)

The linear form, ŷ = xTθ =
∑d

j=1 θjxj , may appear restrictive since it apparently excludes dependence on,
for example, x2

j . Imagine, in our marketing example, that buyers are likely to purchase a product if they
see both TV ads and Web ads. In other words, y is large when x1x3 is large. It seems that this case is not
covered well by linear regression. However, this is not the case since we can transform the input variable
using a set of functions g1, . . . , ge and reformulate our assumption as ŷ =

∑e
j=1 θjgj(x), where gj are any
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functions of x, such as x2
1 and x1x3. (But finding approrpiate fatures is a challenging problem.) Note that

the expression ŷ =
∑e

j=1 θjgj(x) is still linear in θ, which is what matters, since we need to optimize θ.

Notation. Define X ∈ Rn×d and y as

X =

xT
1
...

xT
n

, y =

y1
...
yn

 (5.3)

For a given value of θ, we let ŷ = Xθ to be the predicted value. Furthermore, let ϵ be the error vector such
that

y = ŷ + ϵ = Xθ + ϵ. (5.4)

Example 5.1. Suppose

x1 =

(
0
1

)
, x2 =

(
2
0

)
, x3 =

(
1
1

)
, (5.5)

y1 = −1, y2 = 1, y3 = 0. (5.6)

Then

X =

0 1
2 0
1 1

, ŷ = Xθ = θ1

0
2
1

+ θ2

1
0
1

, ϵ = y − ŷ =

−1− θ2
1− 2θ1
−θ1 − θ2

. (5.7)

△

5.2 Least-squares
A common choice for the loss function is

L(yi,x
T
i θ) = (yi − xT

i θ)
2. (5.8)

The empirical risk can be written as

L(θ) =
n∑

i=1

(yi − xT
i θ)

2 = ∥y − Xθ∥22, (5.9)

where we have dropped the 1/n factor present in (5.2) as it does not affect our choice of θ. Denote

θ̂ = argmin
θ

L(θ), (5.10)

and define ŷ = Xθ̂ as the predicted value or estimate based on the model.

Least-squares is relatively easy to deal with from a computational perspective. It also has the same solution
as the MLE for a common probabilistic model as we will see, thus providing an additional rationale for the
resulting approach.

Projection onto the column space of X. Our first observation is that ŷ is in the column space of X,
i.e., it is a linear combination of the columns of X. We can thus restate our goal as finding ŷ in the column
space of X such that ∥y − ŷ∥ is minimized. Hence, ŷ is the projection of y onto the column space of X as
shown in Figure 5.1. Then, from the Projection Lemma in the Appendix, y− ŷ is orthogonal to each column
of X.
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Figure 5.1: Error is minimized by projecting y onto the column space of X, Span(col(X)).

This orthogonality of the error to columns of X can be written as XT (y − ŷ) = 0. We have

XT (y − ŷ) = 0 ⇐⇒ XT (y − Xθ̂) = 0 (5.11)

⇐⇒ XTy = XTXθ̂ (5.12)

⇐⇒ θ̂ = (XTX)−1XTy (5.13)

Here we have assumed that XTX is invertible. This holds if the columns of X are linearly independent. To
see this, we will show XTXα = 0 implies that α = 0 if the columns of X are linearly independent:

XTXα = 0 ⇒ αTXTXα = 0 ⇒ (Xα)T (Xα) = 0 ⇒ Xα = 0 ⇒ α = 0, (5.14)

where the last step follows from the fact that the columns of X are linearly independent.

Example 5.2. From Example 5.1, we have

X =

0 1
2 0
1 1

, y =

−1
1
0

, (5.15)

and so

XTX =

(
5 1
1 2

)
, (XTX)−1 =

1

9

(
2 −1
−1 5

)
(5.16)

(XTX)−1XT =
1

9

(
−1 4 1
5 −2 4

)
θ̂ =

(
5/9
−7/9

)
(5.17)

ŷ =

−7/9
10/9
−2/9

, y − ŷ =

−2/9
−1/9
2/9

. (5.18)

△

Gradient descent. The closed-form solution provided in (5.13) for finding θ̂ requires taking matrix in-
verses of possibly very large matrices, which could be computationally expensive. A less expensive solution
is gradient descent, where we take the derivative of the loss to minimize it. Let ∇L(θ) =

(
dL
dθ

)T
be the
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gradient of L. Recall that the direction of the gradient indicates the direction of maximum increase and its
magnitude represents the slope of the increase. We have

L = (y − Xθ)T (y − Xθ), (5.19)

∇L = 2
[
(y − Xθ)T (−X)

]T
= −2XT (y − Xθ). (5.20)

(Setting the gradient equal to 0 again gives θ̂ = (XTX)−1XTy. Note that the Hessian is XTX, which is
positive-semi-definite.) In gradient descent, we start from an arbitrary value θ(0) and move towards the
solution in steps:

θ(t+1) = θ(t) + ρXT (y − Xθ(t)) (5.21)

= θ(t) + ρ

n∑
i=1

xi(yi − xT
i θ

(t)), (5.22)

where ρ is the learning rate. This approach gets to the lowest point by moving in the direction of the steepest
descent as shown in figure below for Example 5.1.

Figure 5.2: Gradient descent for linear regression

Standardization
We sometimes assume that X is standardized, meaning that each column v is shifted and scaled such that
vT1 = 0 and vTv = 1 and that y is centered so that yT1 = 0. Standardization of the inputs puts
different features under the same scale and can help to reduce the correlation between features when having
polynomial/interaction terms. Standardizing inputs can also be shown to be equivalent to minimizing the
squared loss with an intercept term.

Example 5.3 (†). We show that standardizing inputs and then finding the solution with no intercept term
is equivalent to minimizing the squared loss with an intercept term. By including an intercept term, the loss
becomes

L(θ, θ0) =
n∑

i=1

(
yi − xT

i θ − θ0
)2
. (5.23)

Such formulation has the advantage of allowing y to be nonzero when x is zero. Let the solution to this new
loss formulation be θ̂, θ̂0:

θ̂0, θ̂ = argmin
θ0,θ

L(θ, θ0) (5.24)
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and let ŷ = Xθ̂ + θ̂01 be the predictions.

Let the columns of X be v1, . . . ,vm. We provide an analysis that the optimal prediction ŷ found by con-
sidering the intercept term is the same as minimizing the normal squared loss (5.9) over the standardized
inputs X̃ and ỹ:

θ̌ = argmin
θ

n∑
i=1

(
ỹi − x̃T

i θ
)2
, (5.25)

y̌ = X̃θ̌ + ȳ1, (5.26)

where

X̃ =

x̃T
1
...

x̃T
n

 = (ṽ1, . . . , ṽm), ṽj = (vj − βj1)/αj , βj =
1

n

n∑
i=1

vji, αj = ∥vj − βj1∥2, (5.27)

ỹ = y − ȳ1, ȳ =
1

n

n∑
j=1

yj . (5.28)

Let’s first minimize the new loss (5.23). We can fix θ for now. Then, the loss function is quadratic in θ0 and
the optimal choice for θ0 can be found as

θ̂0(θ) = ȳ −
m∑
j=1

βjθj . (5.29)

Substituting θ0 by θ̂0(θ) in the loss (5.23) gives

θ̂ = argmin
θ

n∑
i=1

(yi − xT
i θ − ȳ +

m∑
j=1

βjθj)
2. (5.30)

After rewriting (5.25) as

θ̌ = argmin
θ

n∑
i=1

(ỹi − x̃T
i θ)

2 = argmin
θ

n∑
i=1

(yi − ȳ −
m∑
j=1

(xij − βj)

αj
θj)

2 (5.31)

= argmin
θ

n∑
i=1

(yi −
m∑
j=1

xij
θj
αj

− ȳ +

m∑
j=1

βj
θj
αj

)2, (5.32)

we can observe an analogy between (5.30) and (5.32). It follows that θ̌j = αj θ̂j for all 1 ≤ j ≤ m.

Hence, for all 1 ≤ i ≤ n,

y̌i = x̃T
i θ̌ + ȳ =

m∑
j=1

x̃ij θ̌j + ȳ =

m∑
j=1

(xij − βj)θ̂j + ȳ = xT
i θ̂ + θ̂0 = ŷi, (5.33)

i.e., the predictions we obtained from (5.24) and (5.25) are equal. Note that the second last equality follows
from θ̂0(θ̂) = θ̂0. △

5.3 Probabilistic Models for Regression
So far we haven’t made any assumptions regarding the statistics of the data. In this section, we consider two
models: i) a model that only characterizes the mean and covariance of the error vector and ii) a Gaussian
model.
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5.3.1 General model
Let us now assume that

Y = xTθ∗ + ϵ, E[ϵ] = 0, Var(ϵ) = σ2.

We have n samples (xi, yi). For simplicity, we will assume that xi are deterministic. We will further assume
for any i, j, i ̸= j, ϵi and ϵj are uncorrelated. In vector form, we have

Y = Xθ∗ + ϵ, E[ϵ] = 0, Cov(ϵ) = E[ϵϵT ] = σ2I.

At this point, we are not making any other assumptions related to the distribution of ϵ.1

Frequentist evaluation: Consider the estimator θ̂ = (XTX)−1XTy. Let us investigate the behavior of θ̂
by viewing it as a random variable Θ̂ under this model. We have

E[Θ̂] = E[(XTX)−1XTY ] (5.34)

= (XTX)−1XT E[Y ] (5.35)

= (XTX)−1XT E[Xθ∗ + ϵ] (5.36)
= θ∗, (5.37)

indicating that θ̂ is an unbiased estimate of θ∗. In particular, each dimension is estimated without bias, i.e.,
E[Θ̂i] = θ∗i .

We also find

Cov(Θ̂) = Cov((XTX)−1XTY ) (5.38)

= (XTX)−1XT Cov(Y )X(XTX)−1 (5.39)

= (XTX)−1XT Cov(ϵ)X(XTX)−1 (5.40)

= (XTX)−1σ2. (5.41)

In particular, element i of the diagonal of Cov(Θ̂) is the variance of Θ̂i and also its MSE, as the estimator
is unbiased.

The Gauss-Markov theorem. The Gauss-Markov theorem states that under the assumptions that E[ϵ] =
0 and Cov(ϵ) = σ2I, θ̂ is the best linear unbiased estimator. Here, linear means that θ̂ is linear in y, i.e.,
θ̂ = a1y1 + a2y2 + · · ·+ amym for some scalars am1 . The Gauss-Markov theorem implies that for any2 vector
u, uT θ̂ is an unbiased estimator of uTθ∗ with the smallest possible variance.

5.3.2 Gaussian model
Let us further assume that ϵi are iid, with distribution N (0, σ2), i.e., ϵ ∼ N (0, σ2I). In other words, we
have:

Y = Xθ∗ + ϵ, ϵ ∼ N (0, σ2I) (5.42)

pY (y;θ∗, σ2) ∼ N (Xθ∗, σ2I). (5.43)

Exercise 5.4. Prove that if p(y;θ, σ2) ∼ N (Xθ, σ2I), then for all i, p(yi;θ, σ2) ∼ N (xT
i θ, σ

2) and the yi
are independent. △

Now we have a probabilistic model with unknown parameters θ and σ2.
1For ϵ, we will not follow the convention that random variables are shown as capital letters since capital ϵ can be confused

with Latin E.
2This isn’t entirely precise!
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Maximum Likelihood

Given that the covariance matrix is σ2I and assuming that y is n-dimensional, the density and the likelihood
are

p(y;θ, σ2) =
1

(2πσ2)
n/2

exp

(
− 1

2σ2
(y − Xθ)T (y − Xθ)

)
(5.44)

∝ 1

σn
exp

(
−∥y − Xθ∥22

2σ2

)
(5.45)

ℓ(θ, σ2)
.
= −n ln(σ)− 1

2σ2
∥y − Xθ∥22. (5.46)

So maximizing for θ leads to minimizing ∥y−Xθ∥22 =
∑n

i=1(yi −xT
i θ)

2 which we already know the solution
to:

θ̂ML = θ̂ = (XTX)−1XTy. (5.47)

We can similarly show that

σ̂2
ML =

1

n

n∑
i=1

(yi − xT
i θ̂)

2. (5.48)

The mean and covariance of θ̂ are the same as in §5.3.1. But now we also know that θ̂ is Gaussian. This is
because the linear combination of Gaussian variables is Gaussian. Hence,

θ̂ ∼ N (θ, σ2(XTX)−1). (5.49)

Cramer-Rao Lower Bound. With the additional Gaussian assumption in this section, using Cramer-
Rao lower bound, a stronger result compared to the Gauss-Markov theorem can be obtained. Namely, θ̂ is
the best unbiased estimator (not just the best linear unbiased estimator).

Example 5.5 (†). For an unbiased vector estimator θ̂ of θ, the CRLB has the form

Cov(θ̂) ≽ I−1(θ), (5.50)

where A ≽ B denotes that A−B positive semidefinite. Let us find the CRLB for θ̂ of (5.47). We have

ℓ(θ, σ2)
.
= −n ln(σ)− 1

2σ2
(y − Xθ)T (y − Xθ). (5.51)

∇θℓ =

(
− 1

σ2
(y − Xθ)T (−X)

)T

(5.52)

=
1

σ2
XT (y − Xθ) (5.53)

Hθℓ =
d∇θℓ

dθ
= − 1

σ2
XTX. (5.54)

and so I(θ) = 1
σ2X

TX. Hence, I(θ)−1 = σ2(XTX)−1, which matches the covariance of θ̂ found in (5.41). △

Bayesian Linear Regression

In Bayesian linear regression, the Gaussian likelihood

y|θ, σ2 ∼ N (Xθ, σ2I) (5.55)

is a common choice. But we also need to choose priors for θ and σ2. A possible non-informative choice is

p(θ, σ2) ∝ 1/σ2, (5.56)
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or equivalently, p(σ2) ∝ 1
σ2 , p(θ) ∝ 1 and σ2, and θ are independent.

We are interested in finding
p(θ, σ2|y) = p(θ|σ2,y)p(σ2|y) (5.57)

We start with

p(θ|y, σ2) =
p(θ,y|σ2)

p(y|σ2)
∝ p(θ,y|σ2) = p(y|θ, σ2)p(θ|σ2) ∝ exp

(
− (Xθ − y)T (Xθ − y)

2σ2

)
. (5.58)

Note that in the above expression, we are viewing y and σ2 as given. So the expression p(y|σ2) is treated
as a constant and discarded. Furthermore, p(θ|σ2) = p(θ) ∝ 1.

The right-hand expression in (5.58) is quadratic in θ. So we’ll try to see if we can write it in terms of a
Gaussian distribution. With foresight, let the mean and the covariance of this distribution be denoted θ̂ and
Kσ2. We need

(θ − θ̂)TK−1(θ − θ̂)
.
= (Xθ − y)T (Xθ − y). (5.59)

Ignoring terms that are constant in θ, we require

θTK−1θ − 2θTK−1θ̂
.
= θTXTXθ − 2θTXTy, (5.60)

which is satisfied by K−1 = XTX and

−2θTK−1θ̂ = −2θTXTy, (5.61)

−2θTXTXθ̂ = −2θTXTy, (5.62)

XTXθ̂ = XTy, (5.63)

θ̂ = (XTX)−1XTy. (5.64)

So it suffices to set θ̂ = (XTX)−1XTy and K = (XTX)−1,

p(θ|y, σ2) ∼ N (θ; θ̂,Kσ2). (5.65)

Now we need to find p(σ2|y). Using the fact that p(σ2|y) = p(θ, σ2|y)/p(θ|σ2,y), it can be shown that
p(σ2|y) has a scaled inverse-χ2 distribution,

p(σ2|y) ∼ Inv-χ2(n−m, s2), (5.66)

where m is the dimension of xi and

s2 =
1

n−m
(y − Xθ̂)T (y − Xθ̂). (5.67)

While we can continue analytically and find p(θ|y), in practice, we proceed computationally by generating
samples from p(σ2|y) and then p(θ|y, σ2). With this sampling approach we can also perform prediction for
a given input vector xn+1 of by producing samples from p(yn+1|θ, σ2) ∼ N (xT

n+1θ, σ
2).

5.4 Regularized Linear Regression
Sometimes we are interested in reducing the flexibility of the model to avoid over-fitting, especially when the
size of the data set is small. Alternatively, we may be interested in putting restrictions (e.g., forcing small
coefficients to become 0) so that only the most important aspects of the data appear in the learned model,
thus increasing its interpretability. These can be done by altering the loss function by adding a regularization
term.
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Ridge Regression
Ridge regression adds a penalty for the magnitude of the coefficients. Specifically, the loss function is

L(θ) = ∥y − Xθ∥22 + λ∥θ∥22, (5.68)

where λ is a parameter determining the relative importance of the square error versus the regularization loss
term ∥θ∥22. The problem of minimizing this loss,

θ̂ = argmin
θ

∥y − Xθ∥22 + λ∥θ∥22, (5.69)

can be shown to be equivalent to

θ̂ = argmin
θ

∥y − Xθ∥22, (5.70)

subject to : ∥θ∥22 ≤ t, (5.71)

for some t. There is a one-to-one correspondence between λ and t. The second form is perhaps easier to
understand because of the explicit constraints on ∥θ∥22.

From (5.69),

∇L(θ) = −2XT (y − Xθ) + 2λθ, (5.72)

∇L(θ̂) = 0 ⇐⇒ XT (y − Xθ̂) = λθ̂ (5.73)

⇐⇒ θ̂ = (XTX+ λI)−1XTy. (5.74)

Exercise 5.6. Prove that for λ > 0, XTX + λI is invertible, even if the columns of X are not linearly
independent. △

Bayesian Interpretation

We will now view the regularization penalty from a Bayesian point of view. As before, assume the Gaussian
likelihood

y|θ, σ2 ∼ N (Xθ, σ2I). (5.75)

For simplicity, we focus on estimating only θ and not σ2. For the prior on θ, let

p(θ|σ2) ∼ N (0, (σ2/λ)I) ∝ e−
λθT θ
2σ2 . (5.76)

Then

p(θ|y, σ2) ∝ p(y|θ, σ2)p(θ|σ2) ∝ exp

(
− (Xθ − y)T (Xθ − y) + λθTθ

2σ2

)
. (5.77)

Based on the previous discussion, it is immediately clear that the mode of the posterior distribution for θ
is (XTX+ λI)−1XTy. Furthermore, since the distribution is quadratic, and hence Gaussian, this is also the
mean of the posterior. Hence the formulation for ridge regression is equivalent to assuming a zero-mean
Gaussian distribution for θ, which assigns high prior probabilities to smaller length of θ.

Lasso
In lasso, the regularization penalty has the form of the ℓ1 norm,

∥θ∥1 =

m∑
i=1

|θi|, (5.78)
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where m is the length of θ. The problem is to find

θ̂ = argmin
θ

∥y − Xθ∥22 + λ∥θ∥1, (5.79)

or equivalently

θ̂ = argmin
θ

∥y − Xθ∥22, (5.80)

subject to : ∥θ∥1 ≤ t. (5.81)

Lasso does not have a closed form solution but efficient computational methods exist.

From a Bayesian point of view, lasso is equivalent to finding the mode of the posterior for θ assuming the
same model as above but with the double exponential (Laplace) prior

p(θ|σ2) ∝ e−
λ∥θ∥1
2σ2 . (5.82)

Discussion and generalization
In general we could choose the regularization penalty to be of the form3

∥θ∥qq =

m∑
i=1

|θi|q, (5.83)

where m is the length of θ. For q = 1 and q = 2, we get lasso and ridge regression, respectively.

The effect of the regularization can be viewed from a Bayesian framework, by setting the prior

exp

(
− λ

2σ2
∥θ∥qq

)
. (5.84)

The contours for the priors for different values of q are given below.

In all cases, as we get further from the origin, the prior probability drops. But when q is small, the probability
falls slower along the axes, encouraging solutions in which some of the coordinates are small or zero.

5.5 Error analysis and model selection
If our goal is to minimize the square of the prediction error, why would we use a different loss function for
empirical risk minimization, as we did for ridge regression and lasso? How does this choice affect the error?
Given that we have different choices for the form of the model and its parameters, how do we choose?

3∥θ∥q =
(∑m

i=1 |θi|q
)1/q is called the ℓq-norm of θ.
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5.5.1 Bias-variance trade-off for quadratic error
Let us consider a general regression problem where we want to predict a value Y given an input vector x.
Let the prediction/estimate ŷ for Y given x be denoted by ŷ = f(x), where f is the function predicting Y

given x. For linear regression this is of the form f(x) = xT θ̂, so finding the predictor is the same as finding
θ̂.

For a specific estimator f (e.g., one found based on a given data set {(x1, y1), . . . , (xn, yn)}), the expected
value of the quadratic loss for the next data point is

L(f) = E
[
(Y − f(X))2|X = x

]
(5.85)

= E
[
(Y − f(x))2|X = x

]
, (5.86)

which is called the test error for x. We can view this as the loss for the n+ 1st data point, where we are
given x = xn+1 and are interested in the loss of predicting Yn+1. So, we are interested in evaluating f for a
given input. For instance, in our marketing example from the beginning of the chapter, xn+1 would indicate
a specific budget, e.g., xn+1 = ($10k, $20k, $5k).

Let ȳ(x) = E[Y |X = x]. Then, using the fact that E[(Z − c)2] = Var(Z) + (E[Z]− c)2, we have

L(f) = E
[
(Y − f(x))2|X = x

]
(5.87)

= Var(Y |X = x) + (ȳ(x)− f(x))
2
. (5.88)

Note that the error has two parts: an irreducible part, referred to as intrinsic error, which is not under our
control, and a part that depends on the choice of the predictor. The intrinsic error results from the noise
in “nature,” i.e., the fact that X does not have enough information to fully determine Y . In other words,
this term can be viewed as the accumulated effect of all factors that are not included in X. Having a larger
dataset or choosing a better f does not affect this term. The reducible part compares the performance of our
predictor with the best possible. This error is minimized by setting f(x) = ȳ(x) = E[Y |X = x]. However,
doing so exactly is only possible if we have the distribution or an infinite amount of data.

To summarize, we can write the test error for given f and x as

L(f) = irred. + (f(x)− ȳ(x))
2
. (5.89)

We should choose f to minimize the above quantity. Let us consider how f is chosen through empirical risk
minimization.

1. Determine a set F from which f can be chosen, e.g., all linear functions.

2. Define an empirical loss. Typically, this reflects the loss function in the expected loss (5.86), but may
include a regularization term, i.e.,

∑n
i=1(yi − f(xi))

2 + Reg.

3. Collect data, D = {(x1, y1), . . . , (xn, yn)}, and find f ∈ F that minimizes the empirical loss.

Consider a thought experiment in which this process is repeated many times. In each trial, the set F and
the definition of the empirical loss stay the same, while D and consequently, f are random. Since f is a
function of D, let us denote it as fD. Let M denote the fixed components of this process, i.e., the set F and
the definition of the empirical loss. We are interested to find the loss as a function of M, which is under our
control, averaged over all possible datasets (which is outside our control). This is called the expected test
error

L(M) = E[L(fD)] = irred. + E
[
(fD(x)− ȳ(x))2

]
, (5.90)

where the expectation is taken over all possible datasets. Note that the irreducible part, Var(y|x) is a
constant.With a similar trick as above, we have

L(M)− irred. = E
[
(fD(x)− ȳ(x))2

]
(5.91)

= E
[
(fD(x)− E fD(x))

2
]
+ (E fD(x)− ȳ(x))2, (5.92)
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where the last equality follows from the fact that E fD(x) and ȳ(x) are constants for a given x. The first
term on the last line is the square of the bias and the second term is the variance of fD(x). So

L(M) = irred. + (bias)2 + variance (5.93)

Now, the loss is written as the sum of squared bias term, which compares the average prediction across all
possible datasets with the best possible predictor, and a variance term, which quantifies how different the
estimate for each dataset is from the average, across all datasets.

Typically, as model complexity/flexibility4 increases, bias decreases, while variance increases, since it has
more freedom to vary based on the dataset. Simple/rigid models on the other hand typically have high bias
and low variance. The bottom line is that neither unbiased models nor low variance predictors are necessary
the best in terms of minimizing prediction error.

Another factor that affects the error is the size of the data. In many situations, the size of the data does
affect the bias term but it may not significant since this term is averaged over data sets. The variance terms
is affected because with more data, we get more information, approaching the situation in which p(y|x) is
known. So for very large datasets, the prediction reflects the distribution, which is constant.

5.5.2 Model Selection
As discussed above, the complexity of the model can affect the error. How can we choose the best model? In
the past, we have used minimizing the empirical risk (training error) to optimize the parameters of a model.
Can we again use the same strategy?

The training error for a given predictor f , i.e.,

1

n

∑
L(yi, f(xi)). (5.94)

The training error itself is difficult to study. Averaged over all datasets, the expected training error is

1

n

∑
E[L(Yi, fD(xi))], (5.95)

where for simplicity, we have assumed that that the xi are fixed.

A typically behavior is in the table below, (this is not universally true). Training error is usually smaller for
more complex models but this is not necessarily true for the test error. This makes choosing the best model
based on training error difficult.

Expected
Train Err

Expected Test Err
Irred. Bias2 Var. Total

More complex model ↓ − ↓ ↑ ?
More data ↑ − ↓ ↓ ↓

5.5.2.1 Overfitting and Underfitting

Suppose the true relationship between two scalar variables x and Y is

y = ax+ w, w ∼ N (0, σ2). (5.96)

We assume that σ < ax for typical values of x since otherwise, we cannot predict Y accurately even if a is
known (the irreducible error is large relative to the best predicted value).

The data available to us consists of two points

D = {(x1 = 1, y1), (x2 = 2, y2)}. (5.97)

We consider predictors of the forms
4By flexibility, I mean its responsiveness to changes in the data, i.e., the extent to which the results change when data

changes.
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• ŷ(x) = 0,

• ŷ(x) = θx,

• ŷ(x) = θ1x+ θ2x
2.

For each predictor, we will find the parameter values (θ, θ1, θ2) that minimize the square loss for our data,

1

2

[
(y1 − ŷ(x1))

2 + (y2 − ŷ(x2))
2
]
. (5.98)

For the third predictor, we will also consider the regularized version with loss

1

2

[
(y1 − ŷ(x1))

2 + (y2 − ŷ(x2))
2
]
+ bθ22, (5.99)

where b is a constant. Here, I chose the form bθ22 instead of the ℓ2 norm, b(θ21+θ22) to simplify the derivation.
We will still be able to see the effect of regularization.

We then find the expected error for the training data and for a test data point (x3, y3), where we assume
x3 = 3. The expectation is taken over the randomness in y1, y2, y3. The results are given in the table below.

Prediction
Expected

Train Err

Expected Test Error for x3 = 3

Irr. Bias2 Var. Total

ŷ(x) = 0 5a2

2 + σ2 σ2 9a2 0 9a2 + σ2

ŷ(x) = y1+2y2

5 x σ2

2 σ2 0 9
5σ

2 14
5 σ2

ŷ(x) = 4y1−y2

2 x− 2y1−y2

2 x2 0 σ2 0 18σ2 19σ2

ŷ(x) = b(y1+2y2)+8y1−2y2

5b+4 x

− 4y1−2y2

5b+4 x2

σ2

2

(
1− 1

5b/4+1

)2

σ2 0 9σ2

5

(
1 + 9

(5b/4+1)2

)
σ2

5

(
14 + 81

(5b/4+1)2

)
As we go down the table, the model complexity increases. This allows the model to fit the training data
better, leading to smaller expected training (square) error. The irreducible component of the test error stays
the same, regardless of the model. The prediction bias for the test data point decreases, while its variance
increases.

Given the assumption that σ is small relative to a, the smallest total error is obtained by the middle predictor.
The zero predictor is not complex enough to be able to fit even the training data well. This situation is
referred to as underfitting. The quadratic predictor is so complex that it can fit the training data, including
the noise in the data, perfectly. But it does not generalize well due to its susceptibility to noise and high
variance. This is called overfitting. In other words, the model memorizes this specific dataset rather than
looking for patterns in it.

For the predictor with regularization, the graph below shows how the training and test errors change as a
function of b. In this case, the predictor without regularization is overfitting the data. As b increases, over-
fitting decreases and we obtain a better test error. Note however that here the specific form of regularization
prevents underfitting for large b, something that may occur in practice.
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It is important to note models could perform poorly for reasons other than over- and under-fitting. For
example, if the true distribution of the data is y = a sinx+w, no polynomial predictor will perform well for
a wide range of inputs due to the poor match between the true distribution and the learning model.

5.5.2.2 Training, validation, and test sets

In the previous subsection, we could identify the best model because we knew the true model for (x, y), which
nature uses to produce them. In practice, however, the true model is not known and we cannot compute the
expected test error. We have also seen that the training error is not necessarily a good estimate for the test
error.

If we have sufficient data, a good solution is to divide it into three parts, a training set, a validation set,
and a test set. For each model, the training set is used to optimize its parameters. Then all optimized
models are evaluated on the validation set. Since the validation set is not used in training, this reduces the
risk of over-fitting and, so, the errors for the validation set are better estimates for the test error. We choose
the best model based on the validation set. We perform a final assessment using the test set, which should
provide a good estimate of the error of the selected model for future practical use. Note that the test set
cannot be used for any other purpose. If it is used in training or validation, it will not provide a reliable
estimate of the error in the wild.

Example 5.7 (Regularization bias-variance trade-off). Regularization allows us to control the flexibility of
the model. In ridge regression as λ increases, the model becomes more constrained. For λ > 0 it can be
shown to be biased. With D = (X,y),

E[ŷn+1] = E[xT
n+1θ̂] (5.100)

= xT
n+1(X

TX+ λI)−1XT E[y] (5.101)

= xT
n+1(X

TX+ λI)−1XTXθ. (5.102)

Noting that E[yn+1] = xT
n+1θ, we see that the estimate of ŷn+1 is biased. In particular, if XTX = I, then

E[ŷn+1] =
xT
n+1θ

1 + λ
< xT

n+1θ = E[yn+1]. (5.103)

But it can be shown to have lower variance. If the choice of λ is appropriate, it will have a smaller total
loss. △
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5.6 Stochastic Gradient Descent
Even though that gradient descent is sometimes less computationally expensive than directly finding the
solution, its cost may still be high. In such cases, using stochastic gradient descent (SGD) may be helpful.
SGD tries to improve the estimate by considering one data point (or a small batch of data points) at a time.

First, let’s consider finding the root of a function f(θ) with a simple method. We assume that f(θ) is
bounded and there is a unique root θ∗ such that f is increasing at θ∗.

Suppose that we start from a point θ(0) that is appropriately close to θ∗. We proceed iteratively as

θ(t+1) = θ(t) − atf(θ
(t)), (5.104)

where at satisfies
∞∑
t=1

at = ∞,

∞∑
t=1

a2t < ∞. (5.105)

For example, at = 1/t is a good choice while at = 1/t2 isn’t. It can then be shown that θ(t) converges to θ∗.

But what if we cannot compute f(θ) but instead we have access to a noisy version F (θ) that satisfies
f(θ) = E[F (θ)], where F (θ) is bounded. It turns out that if we let

θ(t+1) = θ(t) − atF (θ(t)), (5.106)

where in each iteration we sample F (θ), then θ(t) again converges to θ∗.

Now let us consider the loss function for linear regression (note that we are using the expected loss as opposed
to empirical loss)

L(θ) = E[(y − xTθ)2], (5.107)

where we are also assuming that x is random with some distribution. To minimize this loss, we compute the
gradient:

∇L(θ) = E[−2(y − xTθ)x] (5.108)

We would like to find θ such that the gradient above is zero.

Let

f(θ) = E[−2(y − xTθ)x] (5.109)

F (θ) = −2(y − xTθ)x, (5.110)

so that f(θ) = E[F (θ)]. Now the elements of the data set {(x1, y1), . . . , (xn, yn)} can be used to produce
samples for F (θ). So we let

θ(t+1) = θ(t) + at(yi − xT
i θ

(t))xi, (5.111)

which is the stochastic gradient descent algorithm for linear regression.
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