
Chapter 4

Multivariate Random Variables

In this chapter, we will review some topics related to random vectors, which will be of use in the following
chapters.

4.1 Gaussian Random Vectors (Multivariate Normal Distribution)
Recall that a random variable X is Gaussian (normal) with mean µ and variance σ2 > 0 if the pdf of X is
given by

pX(x) =
1√
2πσ2

exp− (x− µ)2

2σ2
. (4.1)

Definition 4.1. A collection of random variables is jointly Gaussian if any linear combination of these
variables is Gaussian. A Gaussian random vector, also known as a multivariate normal vector, is a vector
whose elements are jointly Gaussian. A collection of random vectors is jointly Gaussian if the vector obtained
by concatenating them is jointly Gaussian.

Example 4.2. If
(
X
Y

)
is a Gaussian vector, then Z = 2X + 3Y is Gaussian. Furthermore,

E[Z] = 2E[X] + 3E[Y ], (4.2)
Var(Z) = Cov(2X + 3Y, 2X + 3Y ) = 4Cov(X,X) + 12Cov(X,Y ) + 9Cov(Y, Y ) (4.3)

= 4Var(X) + 12Cov(X,Y ) + 9Var(Y ), (4.4)

which completely characterizes the distribution of Z as Z ∼ N (E[Z],Var(Z)). △

For a Gaussian random vector X of dimension d, with mean E[X] = µ and covariance matrix K = Cov(X) =
E[(X − µ)(X − µ)T ], we have

pX(x) =
1

(2π)d/2|K|1/2
exp

(
−1

2
(x− µ)TK−1(x− µ)

)
, (4.5)

provided that the covariance matrix is invertible.

The elements of X are independent if and only if the covariance matrix is diagonal.

4.1.1 Maximum likelihood estimation
Consider a d-dimensional random vector X = (X1, . . . , Xd) with distribution N (θ∗,K∗) given in (4.5),
where θ∗,K∗ are unknown. Suppose we are interested in the relationship between Xd and X1, . . . , Xd−1. For
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example, for XT = (X1, X2, X3), X1 and X2 could indicate the heights of the parents and X3 could be the
height of the child. We may, for example, be interested in finding E[Xd|X1, . . . , Xd−1], thus estimating Xd

based on X1, . . . , Xd−1. If we find the distribution, in other words, θ∗,K∗, we can do so. Furthermore, the
matrix K∗ can indicate which dimensions are more strongly correlated.

Consider a set of n iid samples D = {x1,x2, . . . ,xn}, where each xi is a sample of X. We denote the
elements of xi as xi = (xi1, . . . , xid).

To estimate θ∗ and K∗, we write

ℓ(θ,K) = ln p(D;θ,K) =
n∑

i=1

ln p(xi;θ,K) (4.6)

.
=

n

2
ln |K−1| − 1

2

n∑
i=1

(xi − θ)TK−1(xi − θ), (4.7)

where we have used the fact that |K−1| = 1
|K| .

As seen in the appendix (last chapter), for a symmetric matrix A, we have d
dv (y

TAy) = 2yTAdy
dv . Hence,

∂ℓ

∂θ
= −1

2

n∑
i=1

2(xi − θ)TK−1(−I) =
n∑

i=1

(xi − θ)TK−1. (4.8)

Setting this equal to zero yields

θ̂ML = x̄ =
1

n

n∑
i=1

xi. (4.9)

Exercise 4.3. Using the facts

∂

∂A
xTAx = xxT ,

∂

∂A
ln |A| = A−T (4.10)

prove that

K̂ML =
1

n

n∑
i=1

(xi − x̄)(xi − x̄)T (4.11)

△

4.1.2 Bayesian estimation
We now solve the same problem using Bayesian estimation, with the following likelihood

X|Θ ∼ N (Θ,K), (4.12)

p(xn
1 |θ) ∝ exp

(
−1

2

n∑
i=1

(xi − θ)TK−1(xi − θ)

)
, (4.13)

where, for simplicity, we assume K is known and we only need to estimate Θ. As the prior, we choose

Θ ∼ N (µ0,S0) (4.14)

p(θ) ∝ exp

(
−1

2
(θ − µ0)

TS−1
0 (θ − µ0)

)
. (4.15)

Hence,

p(θ|xn
1 ) ∝ exp

(
−1

2
(θ − µ0)

TS−1
0 (θ − µ0)−

1

2

n∑
i=1

(xi − θ)TK−1(xi − θ)

)
. (4.16)
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The exponent in the posterior is quadratic in θ, indicating that Θ has a Gaussian distribution. So Θ|xn
1 ∼

N (θ̂n,Sn), for appropriate choices of θ̂n and Sn,

p(θ|xn
1 ) ∝ exp

(
−1

2
(θ − θ̂n)

TS−1
n (θ − θ̂n)

)
. (4.17)

To find θ̂n and Sn, we equate (4.16) and (4.17), ignoring constant multiplicative factors, which leads to

(θ − µ0)
TS−1

0 (θ − µ0) +

n∑
i=1

(θ − xi)
TK−1(θ − xi)

.
= (θ − θ̂n)

TS−1
n (θ − θ̂n), (4.18)

θTS−1
0 θ − 2θTS−1

0 µ0 + nθTK−1θ − 2θTK−1
n∑

i=1

xi
.
= θTS−1

n θ − 2θTS−1
n θ̂n. (4.19)

Here, we have used the fact that

(a− b)TA(a− b) = aTAa− aTAb− bTAa+ bTAb = aTAa− 2aTAb+ bTAb,

for vectors a, b and a symmetric matrix A. Note that aTAb = bTAa, as both sides are scalars and aTAb =
(aTAb)T = bTAa.

We now collect the terms of the form θTAθ,

θT (S−1
0 + nK−1)θ − 2θT (S−1

0 µ0 + K−1
n∑

i=1

xi)
.
= θTS−1

n θ − 2θTS−1
n θ̂n, (4.20)

leading to the following values for the parameters of the posterior distribution Θ|xn
1 ∼ N (θ̂n,Sn),

S−1
n = S−1

0 + nK−1, (4.21)

θ̂n = Sn(S
−1
0 µ0 + nK−1x̄) (4.22)

= (S−1
0 + nK−1)−1(S−1

0 µ0 + nK−1x̄), (4.23)

where x̄ is
∑n

i=1 xi/n. The posterior mean, θ̂n, which we can also view as a point estimate, is the weighted
average of the prior mean µ0 and what is suggested by the data x̄.

Exercise 4.4. Find θ̂n and S−1
n when S0 = s2I and K = σ2I and interpret the results. △
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