
Chapter 2

Frequentist Parameter Estimation

2.1 Overview
Parameter estimation can be used to infer unknowns about the real world (e.g, the frequency of a given
disease among individuals with a certain genetic mutation) and to estimate the distribution of the data in
machine learning problems.

There are two main frameworks for parameter estimation:

• Frequentist methods: In the frequentists’ perspective, the true parameter value θ∗ is unknown and fixed.
The estimate θ̂ is a function of the data, which provides a single “best” estimate of θ∗. Frequentists have
different methods for estimation including maximum likelihood, which we will discuss in detail, and
the moment method, which finds the parameters by solving equations obtained by equating empirical
moments and theoretical moments.

• Bayesian methods: Parameters are considered to be random and are treated as such. The Bayesian
method provides a unified approach consisting of the following steps:

1. Start with the prior distribution for the parameter

2. Collect data

3. Obtain posterior distribution by updating the prior distribution using data and Bayes’ theorem

2.2 Maximum likelihood estimation
Suppose data x is collected. We model this data as a realization of a random variable X with distribution pX ,
which has an unknown parameter θ∗. The probability of observing x, assuming θ, is pX(x; θ). To estimate
θ∗, Maximum likelihood estimation (MLE) chooses the parameter that assigns the highest probability
to the data:

θ̂mle = argmax
θ

pX(x; θ).

The expression p(x; θ), viewed as a function of θ, is called the likelihood; hence the name maximum
likelihood estimation. As shorthand, we use L(θ) = pX(x; θ) and ℓ(θ) = lnL(θ), where ℓ(θ) is the log-
likelihood. Clearly, the value of θ that maximizes L(θ) is the same as the one that maximizes ℓ(θ):

θ̂mle = argmax
θ

ℓ(θ) = argmax
θ

ln pX(x; θ)

Example 2.1. In this example, we attempt to show the intuition behind maximum likelihood. Suppose that
a given road has heavy traffic or light traffic. We denote the probability of light traffic by θ∗. To estimate
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data, we count the number of times X that the road has light traffic in a period of 100 days. After collecting
this data, we observe that X = 65. We have

pX(65; θ) =

(
100

65

)
θ65(1− θ)35

Let’s try a few different choices for θ, e.g., θ ∈ {0.2, 0.4, 0.6, 0.8}, and see which one makes more sense:

p(65, θ = 0.2) = 1.6× 10−22,

p(65, θ = 0.4) = 0.00000026,

p(65, θ = 0.6) = 0.0491,

p(65, θ = 0.8) = 0.00019,

If θ = 0.2, the probability of 65 days with light traffic is extremely small. So observing x = 65 would be very
unlikely, which in turn would make θ = 0.2 an unreasonable guess. Among the presented choices, θ = 0.6
appears the most reasonable. This reasoning suggests the following: The value of the parameter that assigns
a higher probability to the observation is a better choice.

Since we are not limited to a specific set of choices, we can find the parameter that maximizes the probability
of the observation. In the figure below, L(θ) = p(x; θ) is plotted as a function of θ. This is the likelihood
function.
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We can see that θ = 0.65 maximizes the likelihood and hence is the maximum-likelihood estimate. We can
also show this analytically. First, the likelihood is given as

L(θ) = p(x; θ) =

(
100

65

)
θ65(1− θ)35.

We usually use the log-likelihood as the function to optimize:

ℓ(θ) = logL(θ) = log

((
100

65

)
θ65(1− θ)35

)
.
= 65 log θ + 35 log(1− θ), (2.1)

where .
= denotes equality but with ignoring additive terms that are constant in θ (and thus do not alter the

value of θ that maximize the log-likelihood). We differentiate ℓ(θ) to find the value of θ that maximizes l(θ).

dℓ(θ)

dθ
=

65

θ
− 35

1− θ
= 0 =⇒ 65− 65θ = 35θ =⇒ θ̂mle =

65

100
. (2.2)

Note that this result is intuitive as it agrees with our observation that 65% of the days had light traffic. △
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A note on notation: In general, our data is a vector, which we denote by bold symbols such as x. The
corresponding random variable is X.

Example 2.2 (Parameters of the normal distribution). A device for measuring an unknown quantity
µ∗ (e.g., the mass of an electron) is used n times producing values Y = (Y1, . . . , Yn). Each measurement
is independent and for each i we have Yi = µ∗ + Zi, where Zi is the measurement noise satisfying Zi ∼
N (0, (σ∗)

2
). Note that this implies Yi ∼ N (µ∗, (σ∗)

2
).

Suppose we have collected data y = (y1, . . . , yn). We consider the problem in two cases: µ∗ is unknown but
σ∗ is known; and both µ∗ and σ∗ are unknown.

• Known σ∗, unknown µ∗: We have

pYi
(yi;µ) =

1

σ∗
√
2π

exp

(
−1

2

(
yi − µ

σ∗

)2
)

L(µ) = pY (y;µ) =

n∏
i=1

pYi
(yi;µ)

ℓ(µ) =

n∑
i=1

ln pYi(yi;µ) =

n∑
i=1

(
− ln(σ∗√2π)− 1

2

(
yi − µ

σ∗

)2
)

.
= −1

2

n∑
i=1

(
yi − µ

σ∗

)2

and so

dℓ

dµ
=

n∑
i=1

yi − µ

σ∗ = 0 =⇒ µ̂mle =
1

n

n∑
i=1

yi = ȳ.

• Unknown σ∗, µ∗: We have

ℓ(µ, σ) =

n∑
i=1

(
− ln(σ

√
2π)− 1

2

(
yi − µ

σ

)2
)

.
= −n lnσ − 1

2

n∑
i=1

(
yi − µ

σ

)2

and so

∂ℓ

∂µ
=

n∑
i=1

yi − µ

σ
= 0,

∂ℓ

∂σ
= −n

σ
+

n∑
i=1

(yi − µ)2

σ3
= 0.

Solving this system of equations for µ and σ yields

µ̂mle =
1

n

n∑
i=1

yi = ȳ,

σ̂2
mle =

1

n

n∑
i=1

(yi − ȳ)2.

△
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2.2.1 Maximum likelihood and the closest distribution
We have described maximum likelihood as aiming to find a distribution that gives a high probability to the
observed data. An alternative view relates it to the empirical distribution of the data, denoted px. Given
x = {x1, . . . , xn}, let #x denote the number of times x appears in x. The empirical distribution is given as

px(x) =
#x

n
=

1

n

n∑
i=1

1(x = xi)

where 1(·) equals 1 if the enclosed condition is true and 0 otherwise.

Now consider a parameterized family of distributions pθ. It makes sense to choose θ such that pθ is close to
px. In other words, we would like θ to be chosen such that pθ describes the observed data well. A standard
way of measuring the “closeness” of pθ to the empirical distribution px is relative entropy, DKL(px||pθ).

It turns out the closest distribution is in fact given by maximum likelihood, i.e.,

θ̂mle = argmin
θ

DKL(px||pθ). (2.3)

This fact provide further evidence for the soundness of MLE strategy. Note in particular that if there exists
θ such that pθ = px, it will be chosen by MLE. This is because relative entropy is always non-negative and
equals to 0 if and only if the two distributions are the same. So choosing pθ = px, if possible, provides the
smallest value for the relative entropy, i.e., 0.

Exercise 2.3. Prove (2.3). △

Exercise 2.4. (†) Note that relative entropy is not symmetric. Instead of DKL(px||pθ), we could minimize
DKL(pθ||px). What are the differences between the two formulations and which one is more suitable for
parameter estimation? △

2.3 Properties of Estimators
Maximum likelihood is just one way of estimating parameters. We can choose any function of the data as
the estimate. For instance, in Example 2.2, we could choose the middle (median) value among y1, . . . , yn
as the estimate for µ∗. Given the fact that there are many estimators, how do we evaluate them and select
one?

Clearly, we would like the estimate to be close to the true value. But stating this condition in a rigorous
probabilistic way is a bit challenging in the frequentist framework. We are specifically interested in the error:

θ̂(x)− θ∗,

where θ̂(x) is the estimate based on data x and θ∗ is the true value1. Evaluating θ̂(x) is difficult because,
obviously, the true value is unknown.

So instead of finding the specific error, we may try to find the probability that the true value θ∗ is within
say 10% of the estimate θ̂. But after the estimate is produced based on a given data set, the estimate is a
deterministic value. For instance, in Example 2.1, the MLE is given as θ̂mle = 0.65. So questions such as
“What is the probability that the difference between θ∗ and θ̂(x) is larger than 0.05?” are not meaningful
because, while θ∗ is unknown, both θ∗ and θ̂(x) are deterministic after data is collected and the estimation
task is performed.

The solution to these difficulties is to study the properties of the estimator not based on a specific realization
x of the data but in general, over all possible data sets that could be produced and all the resulting estimated

1Note the slight abuse of notation: sometimes θ is used as the generic parameter, e.g., as the argument of the likelihood
function, and sometimes as the true value of the parameter. The distinction should be clear from the context

Farzad Farnoud 4 University of Virginia



EPL Chapter 2. Frequentist Parameter Estimation

values. We can think of the thought experiment in which many, many, data sets are collected and the
estimation task is performed based on each. The estimate itself is a random variable because each time
we perform the estimation task, new data samples are obtained and these are random, following a certain
distribution. In other words, instead of considering a single estimate θ̂(x) for a specific realization x, we
study the estimator θ̂(X), i.e., a random variable. Then it makes sense to ask “What is the probability
that the difference between θ∗ and θ̂(X) is larger than 0.05?” since θ̂(X) is a random variable with some
distribution. It may be difficult to find the distribution of θ̂(x) and it may depend on the unknown parameter
θ∗ but at least the question is meaningful. In this section, we will see some of the evaluation criteria based
on this view.

A note on notation: Typically, we use θ as the generic parameter, with θ∗ denoting its true value, according
to which X is distributed. For a given data x, the estimate is shown by θ̂(x) or θ̂. So, θ̂ denotes both the
estimator, i.e., a function that produces the estimate given the data, and the estimate; the intent should be
clear from the context. Finally, we may use Θ̂ = θ̂(X) to denote the estimate as a random variable.

2.3.1 Bias
Bias is the expected estimation error,

Bias(θ̂) = E[θ̂(X)− θ∗] = E[θ̂(X)]− θ∗ (2.4)

As discussed, the expected value is taken over the randomness in X. Bias of the estimator tells us whether
in general the estimator over- or under-estimates the true value. If bias is equal to 0, then the estimator is
called unbiased.

Example 2.5 (Example 2.1 continued). Previously, we obtained the maximum likelihood estimate for the
probability θ of having light traffic. Let us find its bias. Again we collect data over 100 days and let X
denote the number of days when there is light traffic. We know that θ̂mle, as a function of data, is given by

θ̂mle(X) =
X

100
,

Note that instead of using a specific value for the number of days with light traffic, such as 65, we use a
random variable X representing this quantity. Dropping the dependence on X for simplicity, the expected
value of θ̂mle is given by

E
[
θ̂mle(X)

]
=

E[X]

100
.

Assuming θ∗ to be the true value, the number X of days when there is light traffic follows Bin(100, θ∗), and
so E[X] = 100θ∗. It follows that

E
[
θ̂mle(X)

]
=

100θ∗

100
= θ∗.

Hence, the maximum likelihood estimate is an unbiased estimator. △

Example 2.6. Given iid data y = (y1, . . . , yn), n ≥ 3, with mean θ∗, let us find the bias of each of the
following estimators,

θ̂1(y) = ȳ =
1

n

n∑
i=1

yi,

θ̂2(y) = y1,

θ̂3(y) =
2y2 + y3

3
.

Farzad Farnoud 5 University of Virginia



EPL Chapter 2. Frequentist Parameter Estimation

Let Yi be the random variable corresponding to observation yi and Ȳ =
∑n

i=1 Y . We have

E θ̂1(Y ) = E Ȳ =
1

n

n∑
i=1

EYi =
1

n

n∑
i=1

θ∗ = θ∗,

E θ̂2(Y ) = EY1 = θ∗,

E θ̂3(Y ) = E
[
2Y2 + Y3

3

]
=

2EY2 + EY3

3
= θ∗.

So all of these estimators are unbiased. △

Example 2.7. Given n samples y = (y1, . . . , yn) from a distribution with mean µ∗ and variance (σ∗)
2, are

the estimators

µ̂ = ȳ =
1

n

n∑
i=1

yi, σ̂2 =
1

n

n∑
i=1

(yi − ȳ)2

for the mean and variance, respectively, unbiased?

For µ̂, we have

E[µ̂(Y )] = E[Ȳ ] = E

[
1

n

n∑
i=1

Yi

]
=

1

n

n∑
i=1

E[Yi] =
1

n
nE[Y1] = µ∗

and so the estimator for the mean is unbiased. We can show (how?) that

E
[
σ̂2(Y )

]
=

n− 1

n
(σ∗)

2

and the bias of estimating (σ∗)
2 is

E
[
σ̂2(Y )

]
− (σ∗)

2
= − 1

n
(σ∗)

2
.

Based on this, we can create an unbiased estimator for the variance as

σ̂2
u(y) =

1

n− 1

n∑
i=1

(yi − ȳ)2.

△

Example 2.8. [1, Example 2.8.2] An urn has m∗ balls, numbered 1, 2, ...,m∗. Suppose however that m∗

is unknown to us. We pick one random ball from the urn and the number on the ball is y. We estimate
m∗ using maximum likelihood. First, let Y be the random variable corresponding to observation y, with
distribution pY (y;m

∗). We have

pY (y;m) =

{
1
m y ≤ m,

0 y > m.

and thus

L(m) =

{
1
m m ≥ y,

0 m < y.

Hence, L(m) is maximized by choosing m(y) = y and so m̂mle = y. To find the bias of m̂mle,

E[m̂mle(Y )] = E[Y ] =

m∗∑
i=1

i · 1

m∗ =
m∗ + 1

2
,

Bias(m̂mle) =
m∗ + 1

2
−m∗ = −m∗ − 1

2
,

which means that the ML estimator tends to underestimates m∗ by almost a factor of 2. △
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Example 2.9 (Linear unbiased estimator). Can we design an unbiased estimator for Example 2.8? There
are many options, but for simplicity we may choose an estimator that is linear in the data, in particular, one
of the form

m̂L(y) = ay + b.

We find a and b such that m̂L is unbiased. We have

E[m̂L(Y )] = aEY + b = a
m∗ + 1

2
+ b.

Setting this equal to m∗ (equality should hold for any m∗) yields a = 2 and b = −1, i.e.,

m̂L(y) = 2y − 1.

△

Example 2.10 (Survival of Humanity (!)). The human species will eventually die out. We use two
methods to estimate the total number of humans m who will ever live. Let humans be enumerated by
birth order as h1, h2, ..., hy, ..., hm, where h1 represents Adam, h2 represents Eve, hy represents you, and hn

represents the last human to live. Assuming that your birth order y is random, the problem is similar to
estimating the number of balls in an urn in Example 2.8.

Assuming that 100 billion humans have been born so far, we have m̂mle = 100 billion and m̂L = 200 billion.
The ML estimate predicts that the end is here. Further, assuming that there will be 140 million births each
year, the unbiased estimator predicts the end of humanity to occur in around 700 years. △

2.3.2 Mean squared error and variance
Example 2.11. Consider an unbiased estimator θ̂ and define θ̂′ = θ̂+W , where W is a zero-mean random
variable with a large variance. Now, θ̂′ is unbiased, similar to θ̂, but it is not a good estimator (regardless of
how good θ̂ is). So clearly, being unbiased alone is not sufficient to ensure that an estimator is “good.” △

For an estimator θ̂, where the random variable describing data is denoted by X, the mean squared error
(MSE) is defined as

MSE(θ̂) = E
[(

θ̂(X)− θ∗
)2]

.

The smaller the MSE, the more accurate the estimator.

Let Θ̂ = θ̂(X). Note that

MSE(θ̂) = E
[(

Θ̂− θ∗
)2]

= E
[((

Θ̂− E Θ̂
)
+
(
E Θ̂− θ∗

))2]
= E

[(
Θ̂− E Θ̂

)2]
+
(
E Θ̂− θ∗

)2
+ 2E

[(
Θ̂− E Θ̂

)](
E Θ̂− θ∗

)
= E

[(
Θ̂− E Θ̂

)2]
+
(
E Θ̂− θ∗

)2
,

where, the third equality uses the fact that E Θ̂− θ∗ is a deterministic constant and the fourth equality the
fact that E

[(
Θ̂− E Θ̂

)]
= 0. Hence,

MSE(θ̂) = Var(θ̂) + (Bias(θ̂))2.

For unbiased estimators, the variance is an important quantity since it is equal to the MSE.
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Example 2.12 (Example 2.1 re-revisit). We saw in Example 2.5 that the maximum likelihood estimate for
the probability of traffic θ∗ is unbiased. Now, let us find its variance. Again, we write θ̂mle(X) = X

100 and

Var(θ̂mle) =
Var(X)

1002
=

θ∗(1− θ∗)

100
,

where X is the number of days without traffic, which follows Bin(100, θ∗) with variance 100θ∗(1 − θ∗). As
we can see, the variance (hence, MSE) increases as the true value of θ∗ approaches 1/2, i.e., every data point
contains more uncertainty. Furthermore, we can extend this result to the more general case where we collect
data for n days. By the same argument, we get

MSE(θ̂mle) = Var(θ̂mle) =
θ∗(1− θ∗)

n
.

△

Example 2.13. Consider data y = (y1, ..., yn), where the corresponding random variables Yi are iid with
distribution N

(
µ, σ2

)
. The ML estimator for the mean µ is θ̂mle(y) = ȳ = 1

n

∑n
i=1 yi is unbiased. We have

MSE(θ̂mle) = Var(Ȳ ) =
σ2

n
.

△

Note that as n increases, the MSE decreases and the estimate becomes more accurate, as would be expected.
This property is studied next.

Exercise 2.14. For the estimators in Example 2.6, find the MSE, assuming the variance is (σ∗)
2. △

Exercise 2.15 (Bias-variance trade-off). Given iid data y = (y1, . . . , yn), n ≥ 3, with mean θ∗ and variance
σ2, show that the MSE of

θ̂1 = ay1,

θ̂n = aȳ =
a

n

n∑
i=1

yi,

for some constant a ∈ R is given as

MSE(θ̂1) = (a− 1)2(θ∗)
2
+ a2σ2,

MSE(θ̂n) = (a− 1)2(θ∗)
2
+ a2σ2/n.

What is a good value for a? Does anything other than a = 1 make sense? The components of the MSE are
given in the plots below for θ̂1 and θ̂n with n = 10, for θ∗ = 0.5, σ2 = 0.1. A trade-off between the bias and
variance is evident. Why is it not feasible to design an estimator by optimizing for a? What is the difference
between estimation based on little data (θ̂1) and a lot of data (θ̂n, n = 10)?
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△

2.3.3 Consistency
Consider an estimator θ̂n(x) based on n samples x = (x1, . . . , xn). Let X = (X1, . . . , Xn) be the random
variables that describe the n data samples and let Θ̂n = θ̂n(X) be the random variable that corresponds to
the estimate. The estimator θ̂n is said to be consistent if Θ̂n → θ∗ as n → ∞. More precisely, for all ϵ > 0,
we need

lim
n→∞

Pr(|Θ̂n − θ∗| ≥ ϵ) = 0.

In other words, the estimator is accurate if the size of the data is large.

Example 2.16. The ML and linear estimators described in Examples 2.8 and 2.9 are very different for a
single data point. But how do they behave if we have a lot of data. First we need to define these for n data
samples. Suppose that we take n samples from the urn with replacement, resulting in y = (y1, y2, . . . , yn).
Define

ȳ =
1

n

n∑
i=1

yi.

To extend the linear estimator to n data points, we can choose

m̂L,n = 2ȳ − 1.

For the ML estimator, we have (why?)

m̂mle,n = max
i

yi.

Both of these, although they look very different, are consistent and converge to m∗ as n → ∞.

• As n → ∞, by LLN, Ȳ converges to the mean of the distribution, i.e., E[Y1] =
m∗+1

2 . Hence, m̂L,n →
2 · m∗+1

2 − 1 = m∗.

• For the ML estimator, as n → ∞, at some point, we will pick the ball numbered m∗ and so we will
eventually have m̂mle = m∗.

Given the two estimators, the bad news is that the estimators disagree significantly for small data. However,
as the size of the sample data increases, the two estimators agree. △
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Figure 2.1: The likelihood function on the left demonstrates strong dependence on θ compared to the one
on the right.

2.4 The Cramer-Rao lower bound*
For an unbiased estimator, the MSE is equal to the variance, and thus the variance represents the accuracy
of the estimator. This leads to the following question: For a given distribution of data, what is the smallest
possible variance of an unbiased estimator?

The accuracy of estimating a parameter θ depends on how strongly the distribution of the data X depends on
θ. If the dependence is strong, i.e., for values of θ other than the true value θ∗, the probability of the observed
data falls sharply, then we may expect to find θ∗ with accuracy. On the other hand, if the dependence is
week, then it will be difficult to find θ∗ with precision. These two cases are shown in Figure 2.1.

Let the data be encoded as a vector X, whose distribution is given by p with parameter θ∗. Assuming
X = x, the log-likelihood is p(x; θ). The sharpness of the log-likelihood ℓ(θ) at the true value θ∗ can be
quantified as

−∂2ℓ(θ)

∂θ2

∣∣∣∣
θ=θ∗

= −∂2 ln p(x; θ)

∂θ2

∣∣∣∣
θ=θ∗

. (2.5)

Given the randomness of the data X, the above quantity is random,

−∂2 ln p(X; θ)

∂θ2

∣∣∣∣
θ=θ∗

So to average over the data, we define

I(θ∗) = −E
[
∂2 ln p(X; θ)

∂θ2

∣∣∣∣
θ=θ∗

]
= −

ˆ
∂2 ln p(x; θ)

∂θ2

∣∣∣∣
θ=θ∗

p(x; θ∗)dx,

which is called the Fisher Information.

The following theorem provides a lower bound on the variance, which is referred to as the Cramer-Rao lower
bound (CRLB).

Theorem 2.17 (CRLB). Given that the log-likelihood ℓ(θ) satisfies certain regularity conditions, the vari-
ance of any unbiased estimator θ̂ of θ∗ satisfies

Var(θ̂) ≥ 1

I(θ∗)
.
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If an estimator achieves the CRLB, i.e., Var(θ̂) = 1/I(θ∗), then it is called efficient.

As a special case, consider when we have n iid data points, and denote the estimator based on this data
as θ̂n. Denote the Fisher information based on n data points as In(θ

∗) and based on one data point as
I1(θ

∗) = I(θ∗). Since the Fisher information is additive (Why? Hint: definition), we have In(θ
∗) = nI(θ∗).

Thus, the variance of an unbiased estimator θ̂n based on n independent observations satisfies

Var(θ̂n) ≥
1

nI(θ∗)
. (2.6)

Example 2.18. In Example 2.2, where we estimated the mean µ∗ of a Gaussian distribution with known
σ2 based on n iid samples y1, . . . , yn, the log-likelihood, ignoring constant terms, was given as

ℓ(µ)
.
= −

n∑
i=1

(yi − µ)2

2σ2
.

And,
∂ℓ(µ)

∂µ
=

1

σ2

n∑
i=1

(yi − µ). (2.7)

Observe that
∂2ℓ(µ)

∂µ2
= − n

σ2
=⇒ I(µ∗) = −E

[
∂2ℓ(µ∗)

∂µ2

]
=

n

σ2
.

Based on the CRLB, the variance of the estimator satisfies

Var(µ̂) ≥ σ2

n
.

The variance of the estimator is Var(µ̂) = σ2

n . Hence, the ML estimator is efficient in this case. △

2.5 Asymptotic normality of the MLE
As shown before, the maximum-likelihood estimator is not necessarily unbiased. However, if we have a large
amount of data, under some regularity conditions, the ML estimator Θ̂n based on n iid data points satisfies

√
n(Θ̂n − θ∗) → N (0, I−1(θ∗)).

So for large data, Θ̂n is nearly normally distributed with mean θ∗ (hence unbiased) and variance I−1(θ∗)/n
(efficient).

While we stated the CRLB and the asymptotic normality of the MLE for scalar parameters, almost identical
results also hold for a vector of parameters.
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