
Chapter 1

Probability, Inference, and Learning

1.1 Introduction
In this chapter, we will study the role of probability in inference, codifying relationships, and machine
learning. When considering these problems, we deal with uncertainty, and that’s were probability comes in.
In other words, we are interested in probability because it allows us to model uncertainty (or equivalently,
belief and knowledge). Sources of uncertainty, for example in machine learning, include:

• Noise: aggregate contribution of factors that we do not (wish to) consider (models focus on the most
important quantities).

• Finite sample size: finite size of data makes it impossible to determine relationships (i.e., probability
distributions) as some configuration may never happen or happen few times in finite data.

1.2 Relationships and joint probability distributions
Is there any relationship between the arrival times of two people working at a business (opening at 9:00 am),
both living in the same area? If so, how can we represent this relationship? How can we make prediction
about one being late given the other is late (e.g., if we need at least one person be present)?

In the same way that we can encode our information about a random quantity as a distribution, we can
encode information about random quantities, as well as their relationships, as joint distributions.

In our example, there’s obviously a relationship, that is, the arrival times are not independent. For example,
both are affected by traffic. Let

T0 : normal traffic
T1 : heavy traffic
A0 : Alice is on time
A1 : Alice is late
B0, B1 for Bob

and assume

Pr(T0) = 0.65,

Pr(A0|T0) = 0.9,

Pr(B0|T0) = 0.82,

Pr(A0|T1) = 0.5,

Pr(B0|T1) = 0.15.
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Finally, conditioned on the traffic situation, Alice and Bob’s arrival times are independent. This information
completely determines all probabilities. As we will see in much grater depth later, the fact that the Alice
and Bob’s arrival times are only related through traffic can be shown graphically as

T

A B

Causal reasoning:

Pr(A0) = Pr(T0) Pr(A0|T0) + Pr(T1) Pr(A0|T1) = (0.65× 0.9) + (0.35× 0.5) = 0.76

Pr(B0) = Pr(T0) Pr(B0|T0) + Pr(T1) Pr(B0|T1) = (0.65× 0.82) + (0.35× 0.15) = 0.5855

Evidential reasoning (inverse probabilities, uses Bayes rule):

Pr(T0|A0) = Pr(A0|T0) Pr(T0)/Pr(A0) = 0.65× 0.9/0.76 = 0.7697

Pr(T0|B0) = Pr(B0|T0) Pr(T0)/Pr(B0) = 0.65× 0.82/0.5855 = 0.9103

The common cause makes the events Ai and Bi dependent. Recall that two events E1 and E2 are independent,
denoted E1 ⊥⊥ E2 if Pr(E1E2) = Pr(E1) Pr(E2), or, if Pr(E2) ̸= 0, Pr(E1|E2) = Pr(E1). We have

Pr(A0|B0) = Pr(A0B0)/Pr(B0)

Pr(A0B0) = (0.65× 0.82× 0.9) + (0.35× 0.15× 0.5) = 0.506

Pr(A0|B0) = 0.506/0.586 = 0.863 ̸= Pr(A0)

Pr(B0|A0) = 0.506/0.76 = 0.6658 ̸= Pr(B0)

So A0 ̸⊥⊥ B0.

However, they are conditionally independent, by assumption

Pr(A0B0|T0) = Pr(A0|T0) Pr(B0|T0),

which is denoted as A0 ⊥⊥ B0|T0.

What is the source of uncertainty in this problem? Since we have assumed the distribution is known, finite
sample size is not an issue. The source is noise. For example, if we had information about other factors
affecting Bob, e.g., how reliable his car is, if he needs to drop off his kids, etc., we could reduce the amount
of noise and make better predictions.

1.3 Inference and decision making
Let us consider a problem about inferring unknown values and making decisions and use probability to
solve it, using both frequentist and Bayesian views. Suppose that the probability that someone with a given
allele of a gene will develop a certain disease is θ. We are interested in determining θ. In particular, we may
be interested in comparing this with the fraction of people in the general population with that disease, say
0.01. Different interpretations lead to different approaches to problems. But to decide, both frequentists
and Bayesians need data.

Data (D): Among a sample of 100 people with this allele, 2 had the disease.
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• A Frequentist thinks of θ as unknown non-random parameter. She starts by asking “What is the
probability of the observation as a function of θ?” We can view each of the 100 people chosen to be an
independent Bernoulli trial with probability θ. So the distribution is Binomial and the probability of
the observation as a function of θ is

L(θ) =

(
100

2

)
θ2(1− θ)98.

Probability of the observation as a function of the parameter is called the likelihood function. So what
value for θ makes the most sense? Since the observation has actually happened, we would expect it to
have a high probability so we find θ that maximizes the likelihood. This method is called maximum
likelihood estimation, and we’ll discuss it in much more detail later. In this case, we estimate θ to be

θ̂ = argmax
θ

L(θ) =
2

100
,

which is a reasonable estimate. But how close is the estimate to the true value? For frequentists, this is
a tricky question to answer probabilistically since the true value and the estimate are both deterministic
at this point. With some clever reasoning (some would say mental gymnastics), frequentists come up
with confidence intervals and confidence levels to quantify the accuracy of estimators.

• A Bayesian thinks of θ as random and assigns to it a distribution, called the prior, before seeing the
data. Thinking of θ as random is imaginative (some would say questionable) since there is no repeatable
experiment and there is a single value that is true. One way to justify randomness of θ is to think of
our universe being drawn from a set of possible universes. Regardless, the Bayesian view is used widely
in practice.

Our Bayesian statistician then looks at the data and updates her distribution for θ, thus obtaining
the posterior distribution. Assume that before seeing the data, we believe that the distribution for θ
is uniform, i.e., p(θ) ∼ Uni[0, 1] = Beta(1, 1). This means that while we do not know what θ is, we
believe it is equally likely to be any value between 0 and 1. When we see the data, we can update this
belief,

p(θ|D) =
p(D|θ)p(θ)

p(D)
(Bayes’ rule)

It turns out p(θ|D) ∼ Beta(3, 99).
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In contrast to the frequentist view, the Bayesian view is consistent and flexible. For example, we can show
that

p(θ > 0.01|D) = 0.92.
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What is the source of uncertainty in this problem? It is the finite sample size. If we know the status of a
very large number of people with the allele, we would know the distribution/ the value of θ.

1.4 Machine Learning and Probability
Let us consider the generic form of supervised machine learning problems, which have the following compo-
nents:

• Data: D = {(x1, y1), ..., (xN , yN )}, xi ∈ X , yi ∈ Y. X is called the feature space, and Y is called
the label space. As an example, each xi could be a vector providing information about a house, e.g.,
(location, lot size, square footage, number of bedrooms, . . . ), and yi can be the sale price of the house.

• Assumption: (xi, yi) are iid samples of random variables X and Y . The joint distribution (X,Y ) is
(partially) unknown.

• Goal: Find the “best” function f to predict y corresponding to a given x. In other words, the function
f produces an estimate ŷ = f(x) of y given data x. Continuing our example, y would be the true but
unknown price of the house with features x, and f(x) would be a prediction (similar to what Zillow
does).

• Evaluation: How do we define “best”? For a given data point (x, y), evaluate the success of f using a
loss function L(y, f(x)), e.g., L(y, f(x)) = |y − f(x)|. Ideally, we would like to minimize the expected
loss over all possible outcomes weighted by their probabilities, so we define

L(f) = E[L(Y, f(X))], (1.1)

also known as the population risk, where the expectation is over the distribution p(x, y) of (X,Y ).
Our goal then becomes finding

f∗∗ = argmin
f

L(f) = argmin
f

E[L(Y, f(X))]. (1.2)

• Learning Algorithm: The algorithm that finds f∗∗, or tries to.

The expectation in (1.2) is computed using the joint distribution p(x, y). Here is where we face our main
machine learning challenge: What we have is the data set D consisting of samples from p(x, y),
but what we need to find f∗∗ is the joint distribution p(x, y). We can address this mismatch in two
ways, either through the Empirical Risk Minimization framework discussed in §1.4.1, or through estimating
the unknown distribution p(x, y) using D as discussed in §1.4.2.

Before proceeding further, let us consider two common problems in supervised learning:

• Regression: Y consists of scalars or vectors of reals. For example, predicting stock price based on
financial information, or determining the score someone will assign a movie based on previous scores.
A common loss function is the quadratic or squared error loss function:

L(y, f(x)) = (y − f(x))2. (1.3)

It can be shown that for this loss, if the distribution is known,

f∗∗(x) = E[Y |X = x]. (1.4)

• Classification: Y consists of classes or categories. For example, speech recognition, hand writing
recognition, the presence or absence of a disease. A common loss function is the 0-1 loss:

L(y, f(x)) =

{
1, if y ̸= f(x).

0, if y = f(x).
(1.5)

In this case, if the distribution is known, then the best classifier is

f∗∗(x) = argmax
y∈Y

p(y|x). (1.6)
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We emphasize again that to solve the problem optimally as in (1.4) and (1.6), we need to know the joint
distribution of x and y or the conditional distribution of y given x.

1.4.1 Empirical Risk Minimization (ERM)
Since we usually do not know the distribution but have access to data D = {(x1, y1), . . . , (xN , yN )}, we
cannot directly minimize the expected loss as in (1.2). Instead we can minimize the empirical risk, i.e.,
the loss on observed data points,

f∗∗ = argmin
f

E[L(Y, f(X)] → f∗∗
N = argmin

f

1

N

N∑
i=1

L(yi, f(xi)). (1.7)

So instead of the best possible solution based on the distribution, f∗∗, we should try to find f∗∗
N based on N

data points. But finding f∗∗
N is still problematic, as it only provides a way for us to determine the value of

f(x) for x ∈ {x1, . . . , xN}. In other words, it is not able to extrapolate or generalize.

A common solution, which is also helpful from a practical point of view, is to restrict the choices for f to a
set H, called the hypothesis set. This leads to the ERM formulation of the learning problem

f∗ = argmin
f∈H

E[L(Y, f(X)] → f∗
N = argmin

f∈H

1

N

N∑
i=1

L(yi, f(xi)). (1.8)

For example, we may choose H to be the set of linear or sigmoid functions. By restricting predictors to the
hypothesis set H, we have introduced our prior knowledge, or bias towards the learning task.

1.4.2 Density estimation
As mentioned, distribution estimation, aka density estimation, is another way to use data for prediction. Here
we discuss only parametric density estimation, where we can (or choose to) represent the joint distribution
of (X,Y ) using a probabilistic model with some unknown parameters, for example, a graphical model with
known structure and unknown parameters. There are also nonparametric ways of estimating distributions.

Let us consider maximum likelihood, which is one method for parameter estimation. Suppose the distribution
has a set of unknown parameters θ and we represent the distribution as pθ. So what should we choose as the
value of θ? If an outcome has a small probability, the chance it appears in our dataset D is small. So those
outcomes observed in D must have large probability. Hence, we must choose θ such that the probability
assigned to D is large, that is,

θ̂ = argmax
θ

pθ(D)

= argmax
θ

N∏
i=1

pθ(xi, yi)

= argmax
θ

N∑
i=1

log pθ(xi, yi),

where in the last step, we use the monotonously of the log function to convert the product to a simpler-to-
deal-with summation. We’ll cover this in more detail later. For now, let us assume we can find θ̂, and in
turn, pθ̂(x, y) as our estimate of the joint distribution p(x, y).

With pθ̂(x, y) in hand, we can solve (1.2) as

f̂N = argmin
f

Eθ̂[L(Y, f(X)],
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where Eθ̂ is expectation computed using the estimated distribution pθ̂. As we have seen in (1.4), for quadratic
and 0-1 losses, we respectively have

f̂N (x) = Eθ̂[Y |X = x],

f̂N (x) = argmax
y∈Y

pθ̂(y|x).

1.5 Information theory and machine learning
Information theory deals with quantifying information and the rules that govern its transmission, storage,
and transformation from one form to another. It has applications in communications, data storage, machine
learning, and biology. In machine learning it can be used to help better understand relationships between
knowns and unknowns, design loss functions, and establish fundamental limits on how well we can do with
a certain amount of data (regardless of the type of algorithm and computational resources).

1.5.1 Quantifying uncertainty
Let X be a Bernoulli random variable that is equal to 1 if it is raining in Seattle and 0 otherwise. Similarly, let
Y be indicate whether its raining in Phoenix. How much information do X and Y provide us? Alternatively,
before they are revealed, how uncertain are we about X and about Y ? Can we measure the information
content of a random variable, or equivalently, our uncertainty about them.

Let’s look at specific outcomes for each variable:

• X = 1: It’s raining in Seattle. This is a statement with a fair amount of information as rain in Seattle
is almost 50/50.

• Y = 0: It’s not raining in Phoenix. This statement doesn’t provide a lot of information as this outcome
is expected and has a high probability.

• Y = 1: It’s raining in Phoenix. This provides a lot of information as this outcomes is unlikely and
surprising.

So as a function of probability, the amount of information of a given statement decreases as the probability
increases. If the probability of an outcome is p, what is a good function describing the amount of information
we gain from learning that the outcome has occurred? It turns out a good choice is I(p) = log 1

p , which
is called the self-information function and shown in Figure 1.1 when the base of the log is 2. Then the
information content of the statement ‘X = xi’ is

I(p(xi)) = log
1

p(xi)
.

And the amount of information on average for a random variable X that takes values in the set X =
{x1, . . . , xm} is

H(X) = E
[
log

1

p(X)

]
=

m∑
i=1

p(xi) log
1

p(xi)
,

where for continuous RVs, the sum must be replaced with an integral. This is called the entropy. If the log
is base 2, then the unit is a bit.

If there are m different possible outcomes, then the maximum value that entropy can take is logm. So

0 ≤ H(X) ≤ logm.

An important special case is the binary entropy function Hb(p) = p log 1
p + (1 − p) log 1

1−p for experiments
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Figure 1.1: Self-information (left) for an event with probability p and binary entropy (right) for a Bernoulli
RV with probability of success equal to p.

with two outcomes with probabilities p and 1− p. For example,

H(Fair coin) = Hb

(
1

2

)
= 1,

H(6 on a die) = Hb

(
1

6

)
= 0.65,

H(Rainy day in Seattle) = Hb

(
150

365

)
= 0.977,

H(Rainy day in Phoenix) = Hb

(
33

365

)
= 0.43784,

H(Rainy day in the Sahara) = Hb

(
1

365

)
= 00.027267.

The plot for binary entropy is given in Figure 1.1. The maximum entropy is 1 bit. This makes sense since
we can represent the outcome with 1 bit. Random variables with equal chances of 0 and 1 have the highest
entropy (and maximum uncertainty). Those with predictable outcomes have lower entropies.

Entropy was introduced by Shannon in his article “A mathematical theory of communication” in 1948. It
is also the minimum amount of “bandwidth” you need to transmit the outcome of the experiment. He also
popularized the term bit (Binary digit).

“My greatest concern was what to call it. I thought of calling it ‘information,’ but the word was overly used,
so I decided to call it ‘uncertainty.’ When I discussed it with John von Neumann, he had a better idea. Von
Neumann told me, ‘You should call it entropy, for two reasons. In the first place your uncertainty function has
been used in statistical mechanics under that name, so it already has a name. In the second place, and more
important, no one really knows what entropy really is, so in a debate you will always have the advantage.” –
Claude Shannon, Scientific American (1971), volume 225, page 180.

1.5.2 Relative entropy
Let X be a random variable with set of possible values denoted as X and its distribution as p(x). Let q
be another distribution also over X . For example, let X be a random Latin letter with p given by the
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English letter frequencies and q by the French letter frequencies. For example, we have p(E) = 12.6% and
q(E) = 15.1%.

The relative entropy, or the Kullback–Leibler divergence, between two distributions p and q is defined as

DKL(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)
. (1.9)

The divergence can be viewed as the difference between the entropy of X when self-information is computed
based on an approximate distribution and when it is based on the “true” distribution since

DKL(p||q) =
∑
x∈X

p(x) log
1

q(x)
−

∑
x∈X

p(x) log
1

p(x)

=
∑
x∈X

p(x) log
1

q(x)
−H(X).

Relative entropy provides a measure of difference between two distributions. It is always non-negative and
equals 0 if and only if q = p. In machine learning, it is used to measure how good our estimated distribution
q is to the true distribution p. It is not symmetric, so DKL(p||q) is not necessarily equal to DKL(q||p).

A related quantity is cross-entropy, which is also used as a loss function,

H(p||q) =
∑
x∈X

p(x) log
1

q(x)
.

So DKL(p||q) = H(p||q) +H(X).

1.5.3 Conditional entropy and mutual entropy*
We can also measure the information in multiple random variables using entropy. The information in both
X and Y is denoted H(X,Y ) and is defined as

H(X,Y ) = E
[
log

1

p(X,Y )

]
=

∑
x∈X

∑
y∈Y

p(x, y) log
1

p(x, y)
.

If we know Y , how much information is left in X? This is denoted H(X|Y ). If, for example X = Y + 2,
then H(X|Y ) = 0 since if we know Y , we also know X. Conditional entropy is defined as

H(X|Y ) =
∑
y∈Y

p(y)H(X|Y = y) = E

[
log

1

p(X|Y )

]
= H(X,Y )−H(Y )

Mutual information, I(X;Y ), represents the amount of information that one random variable has about the
other, and is defined as

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X).

While this quick overview is sufficient for our purposes in this course, if you are interested, you can check
out the slides for this Short Lecture on Information Theory, or the course Mathematics of Information.
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