
Chapter 0

Review of Probability

In this chapter, we will review some concepts from probability theory and linear algebra that will be useful
in the rest of the course.

This review is not comprehensive. You can refer to the course webpage for more resources.

0.1 What is probability?
Intuitively, probability is a way of systematically studying events whose outcomes are uncertain. It enables
us to quantify information and uncertainty (e.g., the probability of rolling a 6 is 1/6 or the probability of
rain on grounds at 10 am tomorrow is 20%). It can be used to describe relationships and provides ways to
transfer our knowledge about one random quantity to another.

From a mathematical point of view, probability deals with sets, and functions that assign real values to those
sets, in a way that certain axioms are satisfied. In this sense, probability is similar to geometry, number
theory, etc. It can be used to model the real world, but it can also be studied as an abstract subject.

0.1.1 Definitions:
Assuming an experiment with different possible outcomes, consider the following definitions.1

• Ω: the sample space, the set of all possibilities (outcomes)

• E ⊆ Ω: an event, i.e., a set of outcomes

• Pr : A function from subsets of Ω to R. Pr(E) is the probability of the event E.

0.1.2 Axioms:
• Pr(E) ≥ 0 for all E ⊆ Ω.

• Pr(Ω) = 1

• Pr(E1 ∪ E2) = Pr(E1) + Pr(E2) if E1 ∩ E2 = ∅.

Based on these axioms, many theorems and other results can be proven. For A,B ⊆ Ω:

• If A ⊆ B, then Pr(A) ≤ Pr(B).

• Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B).

More definitions for basic concepts:
1These definitions and the following axioms are simplified. We cannot always assign probability to all subsets of Ω. Also, for

the third axiom, for any countable sequence of mutually exclusive events E1, E2, . . . , we require that Pr(
⋃∞

i=1) =
∑∞

i=1 Pr(Ei).

1
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• Two events A and B are independent, denoted A ⊥⊥ B, if Pr(A ∩B) = Pr(A) Pr(B).

• If Pr(B) ̸= 0, the conditional probability of A given B is defined as

Pr(A|B) =
Pr(A ∩B)

Pr(B)
.

• Random variables, distributions, expected value, ...

What these theorems and definitions ‘mean’ depends on what we think probability means.

0.1.3 Interpretations of probability

Probability is the most important concept in
modern science, especially as nobody has the
slightest notion what it means.

Bertrand Russell

How do we assign probability to events? What does it mean, for example, to say that Pr(E) = 1/3?

• Classical interpretation: If there are K possible outcomes, and we have no reason for some outcomes
to be more likely than others, the probability of each outcome is 1/K.

– Probability of rolling a 3 is 1/6.

– Probability of heads is 1/2 when tossing a fair coin.

• Frequentist interpretation: Assume that there is a “random” experiment that can be repeated many
times. If we repeat it N times and N is very large, then the number of times that the event E occurs
is approximately N Pr(E). In other words, the “frequency” of E occurring is Pr(E).

– Probability of heads for a given coin is Pr(H) = 1/3. So if we toss it 3000 times, we should see
heads around 1000 times.

– Probability distribution of the number N of children (≤ 18) of a randomly chosen American
household:

Pr(N = 0) Pr(N = 1) Pr(N = 2) Pr(N ≥ 3)

1970 0.442 0.182 0.174 0.203
2008 0.541 0.195 0.169 0.095

• Bayesian interpretation: probability indicates the degree of belief in a way that is consistent with the
axioms. This allows us to consider events that are, strictly-speaking, not random.

– Pr(Heads) = 1/2 (both Bayesian and frequentist)

– Pr(Stock market will hit a certain threshold this year)

– Pr(Nuclear war this century)

– Pr(A certain person is guilty of a given crime)

The classical interpretation is sometimes criticized as being circular. We call a coin fair if Pr(H) = Pr(T ) =
1/2 and we say Pr(H) = 1/2 if the coin is fair. Nevertheless, the definition is relied upon in practice,
e.g., in games of chance. The frequentist definition can be criticized for being vague. What do “large” and
“approximately” mean? How large is large enough? And how close should two values be for us to call
them approximately equal? The Bayesian interpretation is criticized for being subjective and for assigning
probabilities to experiments that happen only once (so any given event either happens or does not happen).

Criticism of interpretations of probability does not create any mathematical problems. Mathematically, we
only need to assign probabilities in a way that the axioms are satisfied. Different interpretations however
lead to different approaches to problems, potentially leading to different real-world decisions.
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0.2 Sets and their sizes
Finding the probability of an event is easiest when all outcomes are equally likely. In such cases, if we can
measure the size of the set A of desirable outcomes, dividing that by the size of the sample space, will yield
the probability,

Pr(A) =
|A|
|Ω|

,

where |A| denotes the size of the set A.

Definition 0.1. A set A is finite if there is a natural number n such that the number of elements in A is
less than n. Otherwise, it is infinite. If the elements of A can be counted, i.e., there is a one-to-one function
from A to natural numbers, then A is countable. Otherwise, it is uncountable. A countable set may be
finite (e.g., {1, 5, 6}) or infinite (e.g., integers, prime numbers, rational numbers).

If A is finite, we define its size (aka, cardinality) as the number of elements. This requires us to be able to
count:

• Sum rule: If an action can be performed in m ways and another action can be performed in n ways,
and further if we can choose which action to perform, in total we have m+ n options.

• Product rule: If the first action can be performed in m ways and the second action can be performed
in n ways, and further if we must perform both actions in order, in total we have m× n options.

• Permutations: The number of ways we can arrange n objects is n! = 1× 2× · · · × n.

• Combinations: The number of ways we can choose k objects from a set of n objects is(
n

k

)
=

n!

k!(n− k)!
.

Exercise 0.2. †2 Prove that
(
n
x

)
x = n

(
n−1
x−1

)
. △

Exercise 0.3. How many 8-bit bytes are there? How many of these have exactly 3 ones? If we pick a random
byte, what is the probability that it has exactly 3 ones (binomial distribution)? What is the probability that
it has 6 or more consecutive ones? △

Exercise 0.4. How many binary sequences of length n that end with one are there with exactly k ones? △

If the sample space has an infinite, even uncountable, number of outcomes, we may still be able to think of
the outcomes as equally likely. For example, if we pick a random number between 0 and 1, we may assume
all outcomes are equally likely. In such cases, the size of the set can be measured via length, area, volume,
etc.

Exercise 0.5. A random number in the interval [0, 1] is chosen. What is the probability that it is more
than 1/2 but less than 2/3? What is the probability that it is equal to 1/2? What is the probability that it
is rational (optional)? △

Exercise 0.6. A random point is chosen in a square of unit side. What is the probability that it is inside
the circle of diameter one inscribed in the square? What is the probability that it is on the circle? △

0.3 Random variables and distributions
A random variable (RV) is a function that assigns real values to outcomes in Ω. In most cases, there is
a very natural mapping. For example, let X denote the number showing on a dice. Now X is a random
variable, mapping each outcome of the form “the dice shows i” to the real number i. For this reason, the

2This symbol indicates that the exercise, section, etc., is optional.
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fact that random variables are really functions is often overlooked. Information about the probabilities of
different outcomes is given by the distribution of the random variable.

A random variable is discrete if there are a countable number of possibilities (could be infinite but countable,
like natural numbers). They can also be continuous (uncountable number of outcomes, defined over the
real line or some subset of some Euclidean space).

For example, a random variable that is 1 if heads shows when a given coin is filliped and is 0 otherwise is
discrete and finite; the number of phone calls made in a given hour is discrete and infinite; the arrival time
of a plane from midnight is continuous.

0.3.1 Discrete distributions
The distribution of a discrete random variable X is given by its probability mass function (pmf) denoted
by pX(x), where

pX(x) = Pr(X = x).

Clearly, pX(x) ≥ 0 for all x and ∑
x

pX(x) = 1. (0.1)

If clear from the context, we drop the X in the subscript.

Example 0.7 (Poisson Distribution). An RV X has the Poisson distribution with parameter λ if

p(x) =
λxe−λ

x!
, x ∈ {0, 1, . . . }.

The number of times an event, e.g., phone calls or car accidents, occurs in a given interval of time is often
assumed to have a Poisson distribution (with good reason). △

Exercise 0.8. A red die and a blue die are rolled. Let X denote the number showing on the red die and Y
denote the sum of the two dice. Find the pmf of X and the pmf of Y . △

Exercise 0.9. Two cards are drawn at random from a standard deck of 52 cards and let Z denote the
number of Aces drawn. Find the pmf of Z. △

0.3.2 Continuous distributions
The distribution of a continuous random variable X is given by its probability distribution function
(pdf) pX(x), also sometimes denoted fX(x). Roughly speaking,

Pr

(
x− dt

2
≤ X ≤ x+

dt

2

)
= pX(x)dt.

For two real numbers a, b,

Pr(a ≤ X ≤ b) =

ˆ b

a

pX(x)dx.

For any pdf, we have pX(x) ≥ 0 and ˆ ∞

−∞
pX(x)dx = 1.

Exercise 0.10 (Exponential distribution). An exponential random variable X with parameter λ has
distribution

f(x) = λe−λx, x ≥ 0.

For λ = 1, the probability that X is between 1 and 1.1 is around e−1 × 0.1 = 0.37 × 0.1 = 0.037. In the
figure below, the area colored red represents this probability.
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0.3.3 Cumulative distribution functions
Cumulative distribution functions (CDFs) are defined for both discrete and continuous RVs as FX(x) =
pX(X ≤ x) and can be found via summation or integration:

FX(x) =
∑
k≤x

pX(k)

FX(x) =

ˆ x

−∞
pX(t)dt

Example 0.11. The CDF of the exponential RV in Example 0.10 with λ = 2 is given by

FX(x) =

ˆ x

−∞
λe−λtdt = 1− e−λx
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0.3.4 Expected value
The expected value or the mean E[X] of a random variable X with distribution p(x) is given by

E[X] =
∑
x

xp(x),

E[X] =

ˆ ∞

−∞
xp(x)dx.

One way to think about the expected value is as the average of a large number of experiments. For example,
if a game pays out $X each time you play with probability distribution p(x), if you play the game many
times, on average you will win $E[X] per game. That is if you play n times, each time winning $xn, and n
is large, then

1

n
(x1 + x2 + ...+ xn) ≃ E[X].

Exercise 0.12. Find the expected value of the discrete and continuous RVs in the examples above. △

Exercise 0.13. Find E[1]. △

0.3.4.1 Expectation of functions of random variables

For an RV X and a function f(x) it follows from the definition that

E[f(X)] =
∑
x

f(x)p(x),

E[f(X)] =

ˆ ∞

−∞
f(x)p(x)dx.

(0.2)

Exercise 0.14. A random variable X has distribution

pX(−1) = 0.1, pX(0) = 0.2, pX(1) = 0.3, pX(2) = 0.4.

Find EX. Let Y = X2. Find EY , both by finding the distribution of Y and by using (0.2). △

0.3.4.2 Linearity of expectation

For a RV X, functions f(x) and g(x), and real numbers a and b,

E[af(X) + bg(X)] = aE[f(X)] + bE[g(X)],

which can be proven easily from the definition of expectation.

Example 0.15. E[(X − a)2] = E[X2 − 2aX + a2] = E[X2]− 2aEX + a2. △

Consider a collection of random variables X1, X2, . . . , Xn. By the linearity of expectation

E

[
n∑

i=1

Xi

]
=

n∑
i=1

EXi. (0.3)

If all variables are identically distributed, then

E

[
n∑

i=1

Xi

]
= nEX1. (0.4)
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Example 0.16. In a class of n students, what is the expected number of pairs of students who have the
same birthday? To find this, for two students i and j, let Xij be equal to 1 if they share a birthday and 0
otherwise and let X =

∑n−1
i=1

∑n
j=i+1 Xij . Now,

EX =

(
n

2

)
EX12 =

(
n

2

)
Pr(X12 = 1) =

(
n

2

)
1

365
≃ n2

730
. (0.5)

In particular, having n =
√
730 ≃ 27 students in a class is enough to have on average one pair with the same

birthday. With n = 60 and n = 85 students, there should be around 5 and 10 such pairs, respectively. △

0.3.4.3 Variance

Suppose someone offers you a game in which your expected winning is $100. Will you accept? Which game
would you play?

• You always win exactly $100.

• You win $0 with probability 1/2 and $200 with probability 1/2.

• You win $1200 with probability 1/2 and lose $1000 with probability 1/2.

All three have the same mean. So what’s different between them?

The mean helps us represent a distribution with one value, which describes the average behavior of the RV.
But as this example shows, the behavior around the mean is also important. Denoting the mean of X by
µX , the variability around the mean is captured to a degree by the variance Var[X],

Var[X] = E[(X − µX)2].

The variance gives a sense of how far X is from its mean µX , on average. The standard deviation, σX ,
is defined as

σX =
√

Var[X],

and the variance is usually denoted as σ2
X .

Exercise 0.17. Prove that
Var[X] = EX2 − (EX)2.

△

Exercise 0.18. Find the mean and variance of each of the following RVs [1]:

• X + c

• aX

• aX + c

• X−µX

σX
(called the standardized version of X)

△

0.3.5 Common distributions
We denote X having distribution ‘Dist’ by X ∼ Dist(a, b, . . . ), where a, b, . . . , are the parameters of the
distribution.
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0.3.5.1 Discrete distributions

• X ∼ Ber(p) : Pr(X = 1) = p, Pr(X = 0) = 1− p, E[X] = p, Var[X] = p(1− p).

• X ∼ Bin(n, p) : 3 p(x) =
(
n
x

)
px(1− p)n−x, 0 ≤ x ≤ n, E[X] = np, Var[X] = np(1− p).

• X ∼ Geo(p) : p(x) = (1− p)x−1p, x ≥ 1, E[X] = 1/p, Var[X] = (1/p)2 − (1/p).

• X ∼ NegBin(k, p) : p(x) =
(
x−1
k−1

)
(1− p)x−kpk, x ≥ k, E[X] = k/p, Var[X] = k[(1/p)2 − (1/p)].

• X ∼ Poi(λ) : p(x) = λxe−λ

x! , x ≥ 0, E[X] = λ, Var[X] = λ.

• X ∼ Uni[a, b] : p(x) = 1
b−a+1 , x ∈ Z, a ≤ x ≤ b, E[X] = a+b

2 , Var[X] = (b−a+1)2−1
12 .

Exercise 0.19. Prove that the mean of Bin(n, p) is as given using Exercise 0.2. △

0.3.5.2 Continuous distributions

• X ∼ Uni(a, b) : p(x) = 1
b−a , x ∈ (a, b), E[X] = a+b

2 , Var[X] = (b−a)2

12 .

• X ∼ N (µ, σ2) : p(x) = 1√
2πσ2

exp(− (x−µ)2

2σ2 ), x ∈ R, E[X] = µ, Var[X] = σ2.

• X ∼ Exp(λ) : p(x) = λe−λx, x ≥ 0, E[X] = 1/λ, Var[X] = 1/λ
2
.

Sometimes, we drop the normalization constant, that is, the constant by which we divide to ensure that the
distribution integrates to 1. This could be because the constant is not important (e.g., in Bayesian inference)
or because it is hard to determine. In such cases, we use ∝ to show proportionality rather than equality. We
should be careful which of the entities appearing is the variable. For example, viewed as a function of x, we
have f(x) = λxe−λ

x! ∝ λx

x! and as a function of λ, we have g(λ) = λxe−λ

x! ∝ λxe−λ.

• X ∼ Beta(α, β) : p(x) ∝ xα−1(1− x)β−1, 0 ≤ x ≤ 1, E[X] = α
α+β , Var[X] = αβ

(α+β)2(α+β+1) .

• X ∼ Gamma(α, β) : p(x) ∝ xα−1e−βx, x > 0, E[X] = α
β , Var[X] = α

β2 .

Example 0.20. For the distributions given in this section, try changing what the variable is and what
the parameters are and check whether another distribution from the list can be obtained with appropriate
normalization. For example, Bin(n, p) viewed as a distribution in p turns into Beta(x+ 1, n− x+ 1). △

0.4 Joint probability distributions
Joint probability distributions allow us to encode information about relationships between quantities, from
independence to strong correlation.

For random variables X and Y , the CDF and the pmf/pdf give their joint distribution, depending on their
type,

FX,Y (x, y) = Pr(X ≤ x, Y ≤ y), CDF for continuous and discrete
pX,Y (x, y) = Pr(X = x, Y = y), pmf for discrete

pX,Y (x, y)dxdy ≃ Pr

(
x− dx

2
≤ X ≤ x+

dx

2
, y − dy

2
≤ Y ≤ y +

dy

2

)
, pdf for continuous

3Note that sometimes p is used both as a parameter and as the distribution. The meaning should be clear from the context.
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We can find the distribution for each random variable (in this context these are called the marginals) by
integration/summation,

pX(x) =
∑
y

pX,Y (x, y), pX(x) =

ˆ ∞

−∞
pX,Y (x, y)dy.

0.4.1 Expectation, correlation, and covariance
Given two or more RVs, we may be interested in finding the expected value of a function of these RVs, e.g.,
E[XY ]. In such case, similar to (0.2), we have

E[f(X,Y )] =

ˆ ∞

−∞

ˆ ∞

−∞
f(x, y)p(x, y)dxdy, (0.6)

and similarly for discrete variables.

The correlation between X and Y is E[XY ] =
´ ´

xyp(x, y)dxdy. The covariance Cov(X,Y ) and the
correlation coefficient ρX,Y are defined as

Cov(X,Y ) = E[(X − µX)(Y − µY )]

ρX,Y =
Cov(X,Y )

σXσY
.

It can be shown that −1 ≤ ρX,Y ≤ 1. If ρ = 0, then the random variables are uncorrelated.

What does the correlation coefficient mean? Let X and Y be random variables, for example, weight and
height of a person chosen at random. Suppose that we want to predict the value of Y given X but we are
restricted to linear functions of X. Then, in a certain sense,4 the best predictor Ŷ of Y is

Ŷ = EY + ρ
σY

σX
(X − EX),

with the “error” being
σ2
Y

(
1− ρ2

)
.

In particular, if X and Y are standardized, Ŷ = ρX with error 1− ρ2.

Exercise 0.21. If |ρ| is close to 1, the RVs are said to be strongly correlated. Why? △

Exercise 0.22. Show that Cov(X,Y ) = E[XY ]− EX EY . △

Example 0.23. The bivariate jointly Gaussian distribution for X,Y with means µX and µY , variances σX

and σY , and correlation coefficient ρ is given as

p(x, y) =
1

2πσxσy

√
1− ρ2

e
− 1

2(1−ρ2)

[
(x−µX )2

σ2
X

+
(y−µY )2

σ2
Y

− 2ρ(x−µX )(y−µY )

σXσY

]
.

Examples of this pdf are given in Figure 1. △

Exercise 0.24. For random variables X,Y, Z and constants a, b, c, d, e, prove that

• Var(X) = Cov(X,X)

• Cov(X + Y,Z) = Cov(X,Z) + Cov(Y,Z)

• Cov(aX, Y ) = aCov(X,Y )

• Cov(X, b) = 0

4Minimizing the Mean Square Error
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Figure 1: Bivariate Normal pdfs with µX = µY = 0, σX = σY = 1, with ρ = 0 (uncorrelated), ρ = .5
(positively correlated), and ρ = −.5 (negatively correlated), respectively.
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• Cov(aX + bY + c, dZ + e) = adCov(X,Z) + bdCov(Y,Z)

△

Exercise 0.25. Find the expected values and variances of X and Y from Exercise 0.8. Find Cov(X,Y ). △

0.4.2 Independence
Recall that two events A and B are independent iff (if and only if) Pr(A ∩B) = Pr(A) Pr(B). Two random
variables X and Y are independent if {X ∈ S1} and {Y ∈ S2} are independent for all sets S1 and S2. This
implies that

p(x, y) = p(x)p(y). (0.7)

For two independent random variables, we have

E[XY ] = E[X]E[Y ] (0.8)

and Cov(X,Y ) = 0.

Exercise 0.26. Prove (0.8) using (0.7). △

Exercise 0.27. For two independent RVs X and Y , find Var[X + Y ] and E[(X − Y )2 + 3XY + 5] in terms
of means and variances of X and Y . △

A collection X1, . . . , Xn of random variables that are independent from each other but have the same distri-
bution are called independent and identically distributed (iid). We have

p(x1, . . . , xn) =

n∏
i=1

p(xi). (0.9)

Exercise 0.28. For iid RVs X1, . . . , Xn, let Sn =
∑n

i=1 Xi. Show that

Var(Sn) =

n∑
i=1

Var(Xi). (0.10)

△

Exercise 0.29. For iid RVs X1, . . . , Xn, suppose E[Xi] = µ and Var[Xi] = σ2, and let X̄ be their average.
Show that

E[X̄] = µ, Var[X̄] =
σ2

n
. (0.11)

△

0.4.3 Conditional probability and conditional distributions
For two discrete variables X and Y , the conditional probability distribution of Y given X is given by

pY |X(y|x) = Pr(Y = y|X = x) =
Pr(Y = y,X = x)

Pr(X = x)
=

pX,Y (x, y)

pX(x)
.

For continuous RVs, we also have pY |X(y|x) = pX,Y (x,y)
pX(x) . In this case, however, we interpret the conditional

density as

pY |X(y|x) ≃ Pr(y − ϵ/2 ≤ Y ≤ y + ϵ/2|x− ϵ/2 ≤ X ≤ x+ ϵ/2)

ϵ
,

for small positive ϵ. This essentially says to find pY |X(y|x), we first assume that X is in a narrow strip
around x and then find the density for Y given this assumption.
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Law of total probability. Let A1, A2, . . . , An be a partition of the sample space. That is, ∪n
i=1Ai = Ω

and for all i ̸= j, we have Ai ∩Aj = ∅. For an event Bi, we have

Pr(B) =

n∑
i=1

Pr(B ∩Ai) =

n∑
i=1

Pr(B|Ai) Pr(Ai).

In particular, if X can take on {1, 2, . . . , n}, then for another RV Y,

pY (y) =

n∑
x=1

pY |X(y|x)pX(x).

Chain rule of probability. For events A1, . . . , An, we have

Pr(A1 ∩A2 ∩ · · · ∩An) = Pr(A1) Pr(A2|A1) Pr(A3|A1, A2) · · ·Pr(An|A1, . . . , An−1),

which can be easily proven by induction. A similar rule holds for random variables X1, . . . , Xn:

p(x1, . . . , xn) = p(x1)p(x2|x1)p(x3|x1, x2) . . . p(xn|x1, . . . , xn−1).

Conditional expectations are defined based on conditional distributions, e.g.,

E[X|Y = y] =
∑
x

xpX|Y (x|y).

Exercise 0.30. Suppose the joint pmf is given as

pX,Y (x, y) x = 0 x = 1
y = 0 0.25 0
y = 1 0.5 0.25

Find p(y|x), p(x|y), E[Y |X = 0], E[Y |X = 1], E[X|Y = 0], E[X|Y = 1]. △

Exercise 0.31. A point is chosen uniformly at random in a triangle with vertices on (0, 0), (1, 0), (1, 1).
Let X and Y determine the x and y coordinates of the chosen point. Find p(x|y), p(y|x), E[X|Y = y],
E[Y |X = x]. △

0.4.3.1 Law of iterated expectations.

Consider a random variable X and a function g(x). We can now obtain g(X) by replacing the deterministic
value for x with a random one. Note that g(X) is a random variable. For example, if X ∼ Uni(−1, 1) and
g(x) = |x|, then g(X) is a random variable with distribution Uni(0, 1).

Now let g(x) = E[Y |X = x]. This is, of course, a well-defined function. We define E[Y |X] = g(X), which is
as discussed a random variable. Now that we have a random variable, we can compute its expectation, i.e.,
E[E[Y |X]].

Exercise 0.32. A die is rolled, showing X. A coin is then flipped X times resulting in Y heads. Find E[Y ],
E[Y |X = x], the pmf of E[Y |X], and E[E[Y |X]]. △

It can be shown that

E[E[Y |X]] = E[Y ], E[E[Y |X,Z]|Z] = E[Y |Z]. (0.12)
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0.4.4 Bayes’ rule
In Exercise 0.32, the conditional distribution p(y|x) is readily available as

p(y|x) =
(
x

y

)
2−x.

But what if we are interested in p(x|y)? Since p(x|y) = p(x,y)
p(y) and p(x, y) = p(y|x)p(x), we have

p(x|y) = p(y|x)p(x)
p(y)

=
p(y|x)p(x)∑
x′ p(y|x′)p(x′)

,

which is called the Bayes rule.

Example 0.33. In Exercise 0.32, we can use the Bayes rule to find p(x|y),

p(x|y) =
(
x
y

)
2−x(1/6)∑6

x′=y

(
x′

y

)
2−x′(1/6)

=

(
x
y

)
2−x∑6

x′=y

(
x′

y

)
2−x′

We may ask for example, what is the likeliest value for X if Y = 2. Below, pX|Y (x|2), i.e., the conditional
distribution of X given Y = 2. We can see that the likeliest values for X are 3, 4.

1 2 3 4 5 6

0

5 · 10−2

0.1

0.15

0.2

0.25

x

p
X

|Y
(x
|2
)

△

Bayes’ rule is used in evidential reasoning, examples of which we will see in the next chapter. In this setting,
the goal is to find the probabilities of different causes based on the evidence.

Bayesian inference takes its name from Bayes rule. In this setting, it is often the case that we know the
distribution of data given the parameters. But what we actually have is data and need to find the distribution
of the parameters. The Bayes rule allows us to find this conditional distribution, a topic we will discuss in
detail later.

0.5 Inequalities and limits

0.5.1 Inequalities
0.5.1.1 Markov inequality

Suppose the average length of a blue whale is 22m and we do not know anything else about the distribution
of the lengths of blue whales. Can we say anything about the probability that the length of a randomly
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chosen blue whale is ≥ 30m? For example, is it possible that this probability is 0.8 or larger? No, since in
that case, the average would be ≥ 0.8× 30m = 24m. So only knowing the mean enables us to say something
about the extremes of the probability distribution.

This observation is formalized via the Markov inequality. For a non-negative random variable X, we have

Pr(X ≥ a) ≤ EX

a
.

Exercise 0.34. Prove the Markov inequality. △

A special case of this occurs when X counts something, i.e., it only takes non-negative integer values. Then,

Pr(X ≥ 1) = Pr(X > 0) ≤ EX, Pr(X = 0) ≥ 1− EX.

In particular, if the mean EX is small, then there is a large probability that X = 0.

Exercise 0.35 (†). Provide a bound on the probability that in a random binary sequence of length n, there
exists a run (consecutive occurrences) of 1s of length at least 2 log2 n? (The result will tell you that this is
unlikely for large n.) △

0.5.1.2 Chebyshev inequality

If in addition to the mean, we also have the variance, we can use the Chebyshev bound. For a random
variable X with mean µ and variance σ2,

Pr

(∣∣∣∣X − µ

σ

∣∣∣∣ ≥ a

)
≤ 1

a2
.

Exercise 0.36. Prove the Chebyshev bound using the Markov bound. △

Example 0.37. The Chebyshev bound tells us that being k standard deviations away from the mean has
probability at most 1/k2.

k 2 3 4 5 6 7 8 9 10
Probability of deviating
more than k × std is ≤ 25% 11.1% 6.25 % 4% 2.78% 2.04% 1.56% 1.23% 1%

In particular, being 10 standard deviations away from the mean has probability at most 1%. △

0.5.2 Limits
Limits in probability provide a way to understand what happens when the number of experiments grows or
many random effects accumulate. Limit theorems are beneficial given that we often deal with large volumes
of data. The following limit theorems will be helpful to us later in the course.

0.5.2.1 Law of large numbers

Let X1, . . . , Xn be random variables with mean µ and variance ≤ σ2 and suppose that for each i and j, Xi

and Xj are uncorrelated (in particular, independent). Also, let X̄n = 1
n

∑n
i=1 Xi. Then, for any ϵ > 0,

Pr
(
|X̄n − µ| ≥ ϵ

)
≤ σ2

nϵ2
. (0.13)

As n becomes large the right side becomes smaller and smaller. So for large n the probability of X̄n being
too far from the mean is very small. This is referred to as the Law of Large Numbers (LLN). In other
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words, if we take n independent samples from a random variable X, then the average of those samples will
be close to the mean EX,

1

n
(x1 + x2 + ...+ xn) ≃ E[X],

which is what we used to motivate expected value.

Exercise 0.38. Use the Chebyshev inequality to prove LLN when random variables are independent and
all have the same variance σ2. △

Example 0.39. Suppose Xi ∼ Poi(2), 1 ≤ i ≤ 500, and let X̄n be the average of the first n Xis. Figure 2
shows the plot for X̄n for a realization of Xis obtained via computer simulation. It is observed that for large
values of n, X̄n is close to 2, the mean of the Poisson distribution. △

0 100 200 300 400 500
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Figure 2: X̄n based on Xi ∼ Poi(2) as a function of n.

0.5.2.2 Central limit theorem

Let X1, X2, . . . be iid random variables with mean µ and variance σ2 and let X̄n = 1
n

∑n
i=1 Xi. As n → ∞.

The Central Limit Theorem (CLT) states that

distribution of
√
n(X̄n − µ) → N (0, σ2). (0.14)

That is, the distribution of
√
n(X̄n−µ) approaches the distribution of a normal random variable with mean

0 and variance σ2.

Loosely speaking, the CLT also means Sn =
∑n

i=1 Xi has distribution N (nµ, nσ2).

Example 0.40. Let Xi ∼ Uni(0, 1), 1 ≤ i ≤ n = 10. We produce 50, 000 samples of X̄n (and Sn), and plot
the normalized histograms for

√
n(X̄n − µ) and the pdf of N (0, σ2) and the normalized histogram for Sn

and the pdf of N (nµ, nσ2) in Figure 3. △
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-2 0 2 4 6 8 10
0

0.5

1

Figure 3: The normalized histograms for
√
n(X̄n−µ) and the pdf of N (0, σ2) (on the left) and the normalized

histogram for Sn and the pdf of N (nµ, nσ2) (on the right) for uniform Xi with µ = 1/2 and σ2 = 1/12 and
with n = 10.

0.6 Random vectors
A random vector is a vector of random variables.5 Consider the random vectors X and Y

X =

X1

...
Xm

, Y =

Y1

...
Yn

. (0.15)

The expected value of X is

EX =

EX1

...
EXm

. (0.16)

The correlation matrix of X and Y is the m × n matrix E[XY T ], whose i, jth element is E[XiYj ].
The cross-covariance matrix Cov(X,Y ) of X and Y is the matrix E[(X − EX)(Y − EY )T ], whose
i, jth element is Cov(Xi, Yj). The covariance of a vector X is Cov(X) = Cov(X,X). The conditional
expectation E[X|Y ] of X given Y is a vector whose ith element is E[Xi|Y ].

If the elements of X are uncorrelated, then Cov(Xi, Xj) = 0 for i ̸= j and the covariance matrix becomes
diagonal. If, in addition, Cov(Xi, Xi) = Var(Xi) = σ2, i.e., all elements of X have the same variance σ2,
then Cov(X) = σ2I.

0.6.1 Properties of expectation and covariance
For deterministic matrices A,B, deterministic vectors a, b, and random vectors X,Y ,W ,Z, we have [1]

1. E[AX + a] = AEX + a

2. Cov(X,Y ) = E[X(Y − EY )T ] = E[(X − EX)Y T ] = E[XY T ]− EX EY T

3. E[(AX)(BY )T ] = AE[XY T ]BT

4. Cov(AX + a,BY + b) = ACov(X,Y )BT

5. Cov(AX + a) = ACov(X)AT

6. Cov(W +X,Y +Z) = Cov(W ,Y ) + Cov(W ,Z) + Cov(X,Y ) + Cov(X,Z)

5We use lowercase bold letters to denote deterministic vectors, uppercase bold letters to denote random vectors, and uppercase
sans serif letters, such as A, to denote matrices.
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Example 0.41. For a random vector X and constants a, b, from property 5, we have Cov(aX + b) =
a2 Cov(X). We also prove this using the other properties. The relevant properties are given in each step.

Cov(aX + b) = Cov(aX + b, aX + b) (0.17)
6
= Cov(aX, aX) + Cov(aX, b) + Cov(b, aX) + Cov(b, b) (0.18)
2
= a2 Cov(X,X) + 0 + 0 + 0 (0.19)

△
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